

C
#
 Development

Rob Miles

Edition 1.1 October 2009

Department of Computer Science

University of Hull

 i

Contents

Introduction... 11
Welcome ... 11
Reading the notes.. 11
Getting a copy of the notes ... 11

Computers 12

An Introduction to Computers .. 12
Hardware and Software .. 12

Data and Information .. 13
Data Processing .. 13
Programmer’s Point:At the bottom there is always hardware 14

Programming Languages 15

What is Programming? ... 15
From Problem to Program .. 15
Programmer’s Point:The specification must always be there 16

A Simple Problem ... 16
Specifying the Problem ... 16
Programmer’s Point:metadata is important ... 17
Programmer’s Point:Good programmers are good communicators 19

Programming Languages .. 19
Programmer’s Point:The language is not that important..................................... 20

C# 20

A look at C# .. 20
Dangerous C ... 20
Programmer’s Point:Computers are always stupid ... 21
Safe C# ... 21
C# and Objects ... 21
Making C# Run .. 21
Creating C# Programs .. 22
The Human Computer .. 22
Programmer’s Point:Great programmers debug less .. 22

What Comprises a C# Program? ... 22
Controlling the Compiler .. 23
Storing the Data .. 23
Describing the Solution .. 23
Identifiers and Keywords .. 23

A First C# Program 24

The Program Example .. 24
using System; ... 24
class GlazerCalc .. 25
static.. 25
void .. 25
Main .. 25
() ... 25

 ii

{ .. 26
double.. 26
width, height, woodLength, glassArea 26
Programmer’s Point:Know where your data comes from 26
; ... 26
string widthString, heightString; ... 27
widthString = ... 27
Console. ... 27
ReadLine ... 27
() ... 27
; ... 28
width = ... 28
double. ... 28
Parse .. 28
(widthString); .. 28
heightString = Console.ReadLine(); height =

double.Parse(heightString);.. 29
woodLength = 2*(width + height)*3.25 ; 29
glassArea = 2 * (width * height) ; 29
Console.WriteLine ... 29
(... 29
"The length of the wood is " ... 29
+ ... 29
woodLength .. 30
+ " feet" .. 30
) ... 30
; ... 31
} ... 31
} ... 31
Programmer’s Point:Program layout is very important 31
Punctuation ... 31

Manipulating Data 32

Variables and Data .. 32
Types of Variables .. 32

Storing Numbers ... 32
Storing integer values ... 33
Programmer’s Point:Check your own maths... 33
integer literal values .. 34
Storing real values .. 34
real literal values ... 34
Programmer’s Point:Simple variables are probably best 35
Storing Text .. 35
char variables .. 35
char literal values .. 35
string variables .. 36
string literal values .. 37
bool variables ... 37
bool literal values ... 37
Programmer’s Point:Think about the type of your variables 37

Identifiers .. 38
Programmer’s Point:Think about the names of your variables 38

Giving Values to Variables ... 39
Expressions ... 39

Changing the Type of Data ... 40
Widening and Narrowing ... 40
Casting .. 41

 iii

Types of Data in Expressions.. 42
Programmer’s Point:Casts can add clarity .. 43

Programs and Patterns .. 43

Writing a Program 44

Software as a story .. 44
Comments ... 45
Programmer’s Point:Don't add too much detail .. 45

Program Flow ... 45
Conditional Execution - if .. 46
Conditions and Relational Operators .. 46
Combining Logical Operators .. 48
Programmer’s Point:Break down your conditions .. 48
Lumping Code Together ... 48
Metadata, Magic Numbers and const ... 49

Loops .. 50
Programmer’s Point:Don't be clever/stupid .. 53
Breaking Out of Loops ... 53
Programmer’s Point:Be careful with your breaks ... 53
Going back to the top of a loop .. 54
More Complicated Decisions ... 54
Programmer’s Point:Get used to flipping conditions .. 54
Complete Glazing Program .. 54

Operator Shorthand ... 55
Statements and Values .. 56
Programmer’s Point:Always strive for simplicity ... 57

Neater Printing .. 57
Using Placeholders in Print Strings .. 57

Methods 59

Methods So Far ... 59
Method and Laziness .. 59
Parameters .. 60
Return values .. 60
A Useful Method .. 60
Programmer’s Point:Design with methods ... 61
Method Limitations .. 61
Programmer’s Point:Document your side-effects ... 63
Programmer’s Point:Languages can help programmers...................................... 63
Method Libraries .. 64
Programmer’s Point:Always consider the failure behaviours 64

Variables and Scope ... 64
Scope and blocks .. 65
Nested Blocks ... 65
For loop local variables .. 66
Programmer’s Point:Plan your variable use .. 66

Arrays 66

Why We Need Arrays ... 66
Array Elements ... 67
Array Element Numbering .. 68
Large Arrays ... 68
Managing Array Sizes .. 68
Creating a Two Dimensional Array .. 69
More than Two Dimensions ... 69
Programmer’s Point:Keep your dimensions low .. 69

 iv

Switching 70

Making Multiple Decisions ... 70
Selecting using the if construction .. 70
The switch construction .. 71
Programmer’s Point:switches are a good idea .. 72

Our Case Study: Friendly Bank 72

Bank System Scope ... 72
Bank Notes.. 72

Enumerated Types 72

Enumeration and states ... 73
Sample states .. 73

Creating an enum type .. 74
Programmer’s Point:Use enumerated types .. 74

Structures 75

What is a Structure? .. 75
A sample structure .. 75

Creating a Structure .. 76
Using a Structure .. 76

Initial values in structures ... 77
Programmer’s Point:Structures are crucial ... 77
Enumerated Types in Structures ... 77

Objects, Structures and References 78

Objects and Structures .. 79
Creating and Using a Structure ... 79
Creating and Using an Instance of a Class .. 79

References ... 81
Multiple References to an Instance ... 81
No References to an Instance ... 82
Programmer’s Point:Try to avoid the Garbage Collector 83

Why Bother with References? .. 83
References and Data Structures .. 84
Programmer’s Point:Data Structures are Important .. 84
Reference Importance ... 84

Bank Notes: References and Accounts ... 84

Designing With Objects 85

Programmer’s Point:Not Everything Should Be Possible 86
Data in Objects ... 86

Member Protection inside objects .. 86
Changing private members.. 87
Programmer’s Point:Metadata makes Members and Methods 88
public Methods ... 88
Programmer’s Point:private data and public methods .. 88

A Complete Account Class ... 88
Programmer’s Point:Test Driven Development – the only way 90

Bank Notes: Protecting Account Members ... 90

Static Items 90

Static class members ... 90
Using a static data member of a class ... 91

 v

Programmer’s Point:Static Data Members are Useful and Dangerous 92
Using a static method in a class .. 92
Using member data in static methods ... 93
Programmer’s Point:Static Method Members can be used to make Libraries 94

Bank Notes: Static Bank Information ... 94

The Construction of Objects 94

The Default Constructor ... 95
Our Own Constructor .. 95

Feeding the Constructor Information .. 96
Overloading Constructors ... 96

Overloading a method name ... 97
Constructor Management .. 97

Programmer’s Point:Object Construction Should Be Planned 98
A constructor cannot fail ... 98

Programmer’s Point:Managing Failure is Hard Work .. 99
Constructors and Exceptions .. 99
Programmer’s Point:Consider the International Issues 100

Bank Notes: Constructing an Account .. 100

From Object to Component 100

Components and Hardware ... 101
Why we Need Software Components? .. 101
Components and Interfaces ... 101

Interfaces and Design ... 102
Implementing an Interface in C# ... 102
References to Interfaces .. 103
Using interfaces .. 103
Implementing Multiple Interfaces ... 104
Designing with Interfaces ... 105

Programmer’s Point:Interfaces are just promises ... 105
Bank Notes: Account Interfaces.. 105

Inheritance 106

Extending a parent class .. 106
Programmer’s Point:Block Copy is Evil ... 107

Overriding methods .. 107
Virtual Methods .. 108
Protection of data in class hierarchies... 108

Bank Notes: Overriding for Fun and Profit ... 109
Using the base method .. 109
Making a Replacement Method .. 110

Programmer’s Point:Don’t Replace Methods ... 110
Stopping Overriding ... 110
Bank Notes: Protect Your Code .. 111
Constructors and Hierarchies .. 111

Constructor Chaining .. 112
Programmer’s Point:Design your class construction process 112

Abstract methods and classes .. 112
Abstract classes and interfaces ... 113
References to abstract classes ... 115

Bank Notes: Designing with interface and abstract... 115
Don’t Panic ... 115

Object Etiquette 116

Objects and ToString ... 116

 vi

The Object class ... 116
The ToString method ... 117
Getting the string description of a parent object ... 117

Objects and testing for equals ... 118
Adding an Equals method ... 118
Programmer’s Point:Make sure you use the right equals 119

Objects and this ... 119
this as a reference to the current instance.. 120
Passing a reference to yourself to other classes .. 120
Confusion with this ... 120

Bank Notes: Good Manners are a Good Idea ... 120
Programmer’s Point:Always provide an equals behaviour 121

The power of strings and chars 121

String Manipulation .. 121
String Transformation ... 121
Immutable strings ... 122
String Comparison .. 122
String Editing .. 122
String Length .. 123
Character case ... 123
Trimming and empty strings ... 123
Character Commands .. 123
String Twiddling with StringBuilder ... 124

Properties 124

Properties as class members .. 124
Creating Get and Set methods ... 124
Using Properties .. 125
Properties and interfaces ... 126
Property problems ... 126

Property Assignment Failure .. 126
Properties Run Code ... 127
Programmer’s Point:Don’t use new fangled stuff just because it is there 127

Building a Bank 127

Storing Accounts in an array .. 128
Searching and Performance .. 129
Storing Accounts using a Hash Table ... 130
Using the C# Hashtable collection .. 130

Bank Notes: Key properties are important .. 131

Generics and Collections 131

The ArrayList class ... 131
Creating an ArrayList ... 132
Adding Items to an ArrayList ... 132
Accessing Items in an ArrayList ... 132
Removing Items from an ArrayList .. 133
Finding the size of an ArrayList ... 133
Checking to see if an ArrayList contains an item ... 133
ArrayLists and Arrays ... 133

The List class .. 134
Generics and Behaviours .. 134
Generics and the List .. 135

The Dictionary class ... 135
Writing Generic Code ... 136

 vii

Storing Business Objects 136

Saving an Account .. 137
Loading an Account .. 138

Programmer’s Point:There is only so much you can do 139
Multiple Accounts ... 139

Using streams ... 139
Programmer’s Point:Streams are wonderful ... 140
Saving and loading bank accounts .. 140

Bank Notes: Large Scale Data Storage ... 141
Handling different kinds of accounts .. 141

Health Warning .. 141
Banks and Flexibility .. 142
Saving a child class ... 143
Loading a child class .. 143
Interfaces and the save operation .. 144
Loading and factories ... 144
Factory Dependencies ... 146

Bank Notes: Messy Code .. 146

Business Objects and Editing 146

Programmer’s Point:Production Code .. 146
The role of the Business Object .. 147

Managing a bank account name .. 147
Testing Name Handling .. 148
Programmer’s Point:Use Numbers Not Messages .. 149
Editing the Name .. 149
Creating an Editor class .. 149
Programmer’s Point:Get used to passing references around 150

A Text Based Edit System .. 151
Programmer’s Point:Every Message Counts .. 152

Bank Notes: More Than One User Interface ... 152

A Graphical User Interface 152

Creating a Form ... 152
Adding Components to a Form ... 153
Editing Text with a TextBox Component .. 154
The Button Component ... 155

Events and Delegates .. 156
Events and method calls ... 157
Button Events ... 157

An Account Edit Form .. 158
Extending the Windows Form class.. 158
Disposing of forms ... 160
Using the Edit form .. 160
Modal Editing ... 160
Visual Studio and Form Editing ... 160
Programmer’s Point:Customers really care about the user interface 161

Using Delegates 161

Type safe delegates ... 161
Using a Delegate ... 161
Programmer’s Point:Delegates are strong magic .. 163

Structured Error Handling 163

The Exception class .. 163

 viii

Creating your own exception type .. 163
Throwing an Exception ... 164

Programmer’s Point:Design your error exceptions yourself 165
Multiple Exception Types ... 165

Programmer’s Point:Programs often fail in the error handlers 166

Program Organisation 166

Using Separate Source Files ... 166
Creating a Library ... 167
Using a Library ... 168
Library References at Runtime ... 168
Programmer’s Point:Use Version Control and Change Management 169

Namespaces .. 169
Putting a Class in a Namespace .. 170
Using a Class from a Namespace .. 170
Using a namespace ... 171
Nesting Namespaces ... 171

Namespaces in Separate Files ... 172
Programmer’s Point:Fully Qualified Names are Good 172

Debugging 172

Fault Reporting ... 172
Programmer’s Point:Design Your Fault Reporting Process 173
The two types of Fault .. 173

Bugswatting .. 173
Rip it up and start again .. 174
Programmer’s Point:Bug Fixes Cause Bugs ... 175

Making Perfect Software .. 175

The End? 175

Continuous Development .. 176
Further Reading .. 176

Code Complete Second Edition: Steve McConnell .. 176
How to be a programmer .. 176

Glossary of Terms 177

Abstract ... 177
Accessor .. 177
Base .. 177
Call.. 177
Class .. 177
Code Reuse ... 178
Cohesion ... 178
Collection .. 178
Compiler ... 178
Component .. 178
Constructor ... 179
Coupling ... 179
Creative Laziness .. 179
Delegate .. 179
Dependency .. 179
Event ... 180
Functional Design Specification ... 180
Globally Unique Identifier (GUID) .. 180
Hierarchy .. 180
Immutable ... 180

 ix

Inheritance .. 180
Interface .. 180
Library .. 181
Machine code .. 181
Member ... 181
Metadata ... 181
Method .. 181
Mutator ... 181
Namespace .. 182
Overload ... 182
Override .. 182
Portable ... 182
Private ... 182
Property .. 182
Protected ... 183
Public .. 183
Reference .. 183
Signature ... 183
Source file ... 183
Static ... 183
Stream ... 184
Structure .. 184
Subscript ... 184
Test harness .. 184
This ... 184
Typesafe .. 184
Unit test ... 185
Value type ... 185
Virtual Method .. 185

Index 187

© Rob Miles 2009 Department of Computer Science, The University of Hull.

All rights reserved. No reproduction, copy or transmission of this publication may be made without written

permission. The author can be contacted at:

The Department of Computer Science,

Robert Blackburn Building

The University of Hull,

Cottingham Road

HULL

HU6 7RX

UK

Department: www.dcs.hull.ac.uk

Email: rob@robmiles.com

Blog: www.robmiles.com

If you find a mistake in the text please report the error to foundamistake@robmiles.com and I will take a look.

Vsn. 1.1

Wednesday, 23 September 2009

Computers Introduction

C# Programming © Rob Miles 2009 11

Introduction

Welcome

Welcome to the Wonderful World of Rob Miles™. This is a world of bad jokes, puns,

and programming. In this book I'm going to give you a smattering of the C#

programming language. If you have programmed before I'd be grateful if you'd still

read the text. It is worth it just for the jokes and you may actually learn something.

If you have not programmed before, do not worry. Programming is not rocket science it

is, well, programming. The bad news about learning to program is that you get hit with

a lot of ideas and concepts at around the same time when you start, and this can be

confusing. The keys to learning programming are:

 Practice – do a lot of programming and force yourself to think about things

from a problem solving point of view

 Study – look at programs written by other people. You can learn a lot from

studying code which other folk have created. Figuring out how somebody else

did the job is a great starting point for your solution. And remember that in

many cases there is no best solution, just ones which are better in a particular

context, i.e. the fastest, the smallest, the easiest to use etc.

 Persistence – writing programs is hard work. And you have to work hard at it.

The principle reason why most folks don't make it as programmers is that they

give up. Not because they are stupid. However, don't get too persistent. If you

haven't solved a programming problem in 30 minutes you should call time out

and seek help. Or at least walk away from the problem and come back to it.

Staying up all night trying to sort out a problem is not a good plan. It just

makes you all irritable in the morning. We will cover what to do when it all

goes wrong later in these notes.

Reading the notes

These notes are written to be read straight through, and then referred to afterwards.

They contain a number of Programming Points. These are based on real programming

experience and are to be taken seriously. There are also bits written in a Posh Font.
These are really important and should be learnt by heart.

If you have any comments on how the notes can be made even better (although I of

course consider this highly unlikely) then feel free to get in touch

Above all, enjoy programming.

Rob Miles

rob@robmiles.com

www.robmiles.com

www.dcs.hull.ac.uk

Getting a copy of the notes

These notes are made freely available to Computer Science students at the University of

Hull.

The website for the book is at http://www.csharpcourse.com

Computers An Introduction to Computers

C# Programming © Rob Miles 2009 12

Computers

An Introduction to Computers

Before we consider programming, we are going to consider computers. This is an

important thing to do, because it sets the context in which all the issues of programming

itself are placed.

Qn: Why does a bee hum?

Ans: Because it doesn't know

the words!

One way of describing a computer is as an electric box which humms. This, whilst

technically correct, can lead to significant amounts of confusion, particularly amongst

those who then try to program a fridge. A better way is to describe it as:

A device which processes information according

to instructions it has been given.
This general definition rules out fridges but is not exhaustive. However for our

purposes it will do. The instructions you give to the computer are often called a

program. The business of using a computer is often called programming. This is not

what most people do with computers. Most users do not write programs, instead they

talk to programs written by other people. We must therefore make a distinction between

users and programmers. A user has a job which he or she finds easier to do on a

computer running the appropriate program. A programmer has a masochistic desire to

tinker with the innards of the machine. One of the golden rules is that you never write

your own program if there is already one available, i.e. a keen desire to process words

with a computer should not result in you writing a word processor!

However, because you will often want to do things with computers which have not been

done before, and further because there are people willing to pay you to do it, we are

going to learn how to program as well as use a computer.

Before we can look at the fun packed business of programming though it is worth

looking at some computer terminology:

Hardware and Software

If you ever buy a computer you are not just getting a box which humms. The box, to be

useful, must also have sufficient built in intelligence to understand simple commands to

do things. At this point we must draw a distinction between the software of a computer

system and the hardware.

Hardware is the physical side of the system. Essentially if you can kick it, and it stops

working when immersed in a bucket of water, it is hardware. Hardware is the

impressive pile of lights and switches in the corner....

Software is what makes the machine tick. If a computer has a soul it keeps it in its

software. Software uses the physical ability of the hardware, which can run programs,

do something useful. It is called software because it has no physical existence and it is

comparatively easy to change. Software is the voice which says "Computer Running"

in a Star Trek film.

Computers Data and Information

C# Programming © Rob Miles 2009 13

Windows XP is an operating

system. It gives computer

programs a platform on which

they can execute.

All computers are sold with some software. Without it they would just be a novel and

highly expensive heating system. The software which comes with a computer is often

called its Operating System. The Operating System makes the machine usable. It

looks after all the information held on the computer and provides lots of commands

to allow you to manage things. It also lets you run programs, ones you have written

and ones from other people. You will have to learn to talk to an operating system so

that you can create your C# programs and get them to go.

Data and Information

People use the words data and information interchangeably. They seem to think that

one means the other. I regard data and information as two different things:

Data is the collection of ons and offs which computers store and manipulate.

Information is the interpretation of the data by people to mean something. Strictly

speaking computers process data, humans work on information. An example, the

computer holds the bit pattern:

 11111111 11111111 11111111 00000000

However you could regard this as meaning:

 "you are 256 pounds overdrawn at the bank"

or

 "you are 256 feet below the surface of the ground"

or

 "eight of the thirty two light switches are off"

The transition from data to information is usually made when the human reads the

output. So why am I being so pedantic? Because it is vital to remember that a computer

does not "know" what the data it is processing actually means. As far as it is concerned

data is just patterns of bits, it is you who gives meaning to these patterns. Remember

this when you get a bank statement which says that you have £8,388,608!

Data Processing

Computers are data processors. Information is fed into them; they do something with it,

and then generate further information. A computer program tells the computer what to

do with the information coming in. A computer works on data in the same way that a

sausage machine works on meat, something is put in one end, some processing is

performed, and something comes out of the other end:

Data Computer Data

This makes a computer a very

good "mistake amplifier", as

well as a useful thing to

blame.....

A program is unaware of the data it is processing in the same way that a sausage

machine is unaware of what meat is. Put a bicycle into a sausage machine and it will

try to make sausages out of it. Put duff data into a computer and it will do equally

useless things. It is only us people who actually ascribe meaning to data (see above),

as far as the computer is concerned it is just stuff coming in which has to be

manipulated in some way.

A computer program is just a sequence of instructions which tell a computer what to do

with the data coming in and what form the data sent out will have.

Computers Data and Information

C# Programming © Rob Miles 2009 14

Note that the data processing side of computers, which you might think is entirely

reading and writing numbers, is much more than that, examples of typical data

processing applications are:

Digital Watch : A micro-computer in your watch is taking pulses from a crystal

and requests from buttons, processing this data and producing a display which tells you

the time.

Car : A micro-computer in the engine is taking information from sensors telling it the

current engine speed, road speed, oxygen content of the air, setting of the accelerator

etc and producing voltages out which control the setting of the carburettor, timing of

the spark etc, to optimise the performance of the engine.

CD Player : A computer is taking a signal from the disk and converting it into the

sound that you want to hear. At the same time it is keeping the laser head precisely

positioned and also monitoring all the buttons in case you want to select another part of

the disk.

Games Console: A computer is taking instructions from the controllers and using

them to manage the artificial world that it is creating for the person playing the game.

Note that some of these data processing applications are merely applying technology to

existing devices to improve the way they work. However the CD player and games

console could not be made to work without built-in data processing ability.

Most reasonably complex devices contain data processing components to optimise their

performance and some exist only because we can build in intelligence. It is into this

world that we, as software writers are moving. It is important to think of business of

data processing as much more than working out the company payroll, reading in

numbers and printing out results. These are the traditional uses of computers.

Note that this "raises the

stakes" in that the

consequences of software

failing could be very

damaging.

As software engineers it is inevitable that a great deal of our time will be spent fitting

data processing components into other devices to drive them. You will not press a

switch to make something work, you will press a switch to tell a computer to make it

work. These embedded systems will make computer users of everybody, and we will

have to make sure that they are not even aware that there is a computer in there!

You should also remember that seemingly innocuous programs can have life

threatening possibilities. For example a doctor may use a spreadsheet to calculate doses

of drugs for patients. In this case a defect in the program could result in illness or even

death (note that I don't think that doctors actually do this – but you never know..)

Programmer’s Point:At the bottom there is always hardware

It is important that you remember your programs are actually executed by a piece of hardware

which has physical limitations. You must make sure that the code you write will actually fit in the

target machine and operate at a reasonable speed. The power and capacity of modern computers

makes this less of an issue than in the past, but you should still be aware of these aspects. I will

mention them when appropriate.

Programming Languages What is Programming?

C# Programming © Rob Miles 2009 15

Programming Languages

What is Programming?

I tell people I am a "Software

Engineer".

Programming is a black art. It is the kind of thing that you grudgingly admit to doing,

at night, with the blinds drawn and nobody watching. Tell people that you program

computers and you will get one of the following responses:

1. A blank stare.

2. "That's interesting", followed by a long description of the double glazing that

they have just had fitted.

3. Asked to solve every computer problem that they have ever had, and ever will

have.

4. A look which indicates that you can't be a very good one as they all drive

Ferraris and tap into the Bank of England at will.

Programming is defined by most people as earning huge sums of money doing

something which nobody can understand.

Programming is defined by me as deriving and expressing a solution to a given

problem in a form which a computer system can understand and execute.

One or two things fall out of this definition:

 You need to be able to solve the problem yourself before you can write a

program to do it.

 The computer has to be made to understand what you are trying to tell it to do.

And remember just how much

plumbers earn….

I like to think of a programmer as a bit like a plumber! A plumber will arrive at a job

with a big bag of tools and spare parts. Having looked at it for a while, tut tutting, he

will open his bag and produce various tools and parts, fit them all together and solve

your problem. Programming is just like this. You are given a problem to solve. You

have at your disposal a big bag of tricks, in this case a programming language. You

look at the problem for a while and work out how to solve it and then fit the bits of

the language together to solve the problem you have got. The art of programming is

knowing which bits you need to take out of your bag of tricks to solve each part of

the problem.

From Problem to Program

Programming is not about

mathematics, it is about

organization and structure.

The art of taking a problem and breaking it down into a set of instructions you can

give a computer is the interesting part of programming. Unfortunately it is also the

most difficult part of programming as well. If you think that learning to program is

simply a matter of learning a programming language you are very wrong. In fact if

you think that programming is simply a matter of coming up with a program which

solves a problem you are equally wrong!

There are many things you must consider when writing a program; not all of them are

directly related to the problem in hand. I am going to start on the basis that you are

writing your programs for a customer. He or she has problem and would like you to

write a program to solve it. We shall assume that the customer knows even less about

computers than we do!

Initially we are not even going to talk about the programming language, type of

computer or anything like that, we are simply going to make sure that we know what the

customer wants.

Programming Languages A Simple Problem

C# Programming © Rob Miles 2009 16

Solving the Wrong Problem

Coming up with a perfect solution to a problem the customer has not got is something

which happens surprisingly often in the real world. Many software projects have failed

because the problem that they solved was the wrong one. The developers of the system

quite simply did not find out what was required, but instead created what they thought

was required. The customers assumed that, since the developers had stopped asking

them questions, the right thing was being built, and only at the final handover was the

awful truth revealed. It is therefore very important that a programmer holds off making

something until they know exactly what is required.

The worst thing you can say

to a customer is "I can do

that". Instead you should

think "Is that what the

customer wants?"

This is a kind of self discipline. Programmer’s pride themselves on their ability to

come up with solutions, so as soon as they are given a problem they immediately start

thinking of ways to solve it, this almost a reflex action. What you should do is think

"Do I really understand what the problem is?". Before you solve a problem you

should make sure that you have a watertight definition of what the problem is, which

both you and the customer agree on. In the real world this is sometimes called a

Functional Design Specification or FDS. This tells you exactly what the customer

wants. Both you and the customer sign it, and the bottom line is that if you provide a

system which behaves according to the design specification the customer must pay

you. Once you have got your design specification, then you can think about ways of

solving the problem.

You might think that this is not necessary if you are writing a program for yourself;

there is no customer to satisfy. This is not true. Writing an FDS forces you to think

about your problem at a very detailed level.

Programmer’s Point:The specification must always be there

I have written many programs for money. I would never write a program without getting a solid

specification first. This is true even (or perhaps especially) if I do a job for a friend.

A Simple Problem

Consider the scenario; you are sitting in your favourite chair in the pub contemplating

the universe when you are interrupted in your reverie by a friend of yours who sells

double glazing for a living. He knows you are a programmer of sorts and would like

your help in solving a problem which he has:

He has just started making his own window units and is looking for a program which

will do the costing of the materials for him. He wants to just enter the dimensions of the

window and then get a print out of the cost to make the window, in terms of the amount

of wood and glass required.

"This looks like a nice little earner" you think, and once you have agreed a price you

start work. The first thing you need to do is find out exactly what the customer wants

you to do...

Specifying the Problem

When considering how to write the specification of a system there are three important

things:

 What information flows into the system.

 What flows out of the system.

 What the system does with the information.

There are lots of ways of representing this information in the form of diagrams, for now

we will stick with written text when specifying each of the stages:

Programming Languages A Simple Problem

C# Programming © Rob Miles 2009 17

Information going in

In the case of our immortal double glazing problem we can describe the information as:

 The width of a window.

 The height of the window.

Information coming out

The information that our customer wants to see is:

 the area of glass required for the window

 the length of wood required to build a frame.

You can see what we need if you take a look at the diagram below:

The area of the glass is the width multiplied by the height. To make the frame we will

need two pieces of wood the width of the window, and two pieces of wood the height of

the window.

Programmer’s Point:metadata is important

Information about information is called metadata. The word meta in this situation implies a

"stepping back" from the problem to allow it to be considered in a broader context. In the case of

our window program the metadata will tell us more about the values that are being used and

produced, specifically the units in which the information is expressed and the valid range of values

that the information may have. For any quantity that you represent in a program that you write you

must have at least this level of metadata .

What the program actually does

The program can derive the two values according to the following equations:

glass area = width of window * height of window

wood length = (width of window + height of window) * 2

Putting in more detail

We now have a fairly good understanding of what our program is going to do for us.

Being sensible and far thinking people we do not stop here, we now have to worry

about how our program will decide when the information coming in is actually valid.

This must be done in conjunction with the customer, he or she must understand that if

information is given which fits within the range specified, your program will regard the

data as valid and act accordingly.

In the case of the above we could therefore expand the definition of data coming in as:

Width of Window

Height of
Window

Programming Languages A Simple Problem

C# Programming © Rob Miles 2009 18

 The width of the window, in metres and being a value between 0.5 Metres

and 3.5 metres inclusive.

 The height of the window, in metres and being a value between 0.5 metres

and 2.0 metres inclusive.

Note that we have also added units to our description, this is very important - perhaps

our customer buys wood from a supplier who sells by the foot, in which case our output

description should read :

 The area of glass required for the window, in square metres. Remember

that we are selling double glazing, so two panes will be required.

 The length of wood required for the frame, given in feet using the

conversion factor of 3.25 feet per metre.

Note that both you and the

customer must understand

the document!

Having written this all up in a form that both you and the customer can understand,

we must then both sign the completed specification, and work can commence.

Proving it Works

In a real world you would now create a test which will allow you to prove that the

program works, you could for example say:

If I give the above program the inputs 2 metres high and 1 metre wide the program

should print out: 4 square metres of glass and 9.75 feet of wood.

The test procedure which is designed for a proper project should test out all possible

states within the program, including the all important error conditions. In a large system

the person writing the program may have to create a test harness which is fitted around

the program and will allow it to be tested. Both the customer and the supplier should

agree on the number and type of the tests to be performed and then sign a document

describing these.

Testing is a very important part of program development. There is even one

development technique where you write the tests before you write the actual program

that does the job. This is actually a good idea, and one we will explore later. In terms of

code production, you can expect to write as much code to test your solution as is in the

solution itself. Remember this when you are working out how much work is involved in

a particular job.

Getting Paid

Better yet, set up a phased

payment system so that you

get some money as the system

is developed.

At this point the supplier knows that if a system is created which will pass all the tests

the customer will have no option but to pay for the work! Note also that because the

design and test procedures have been frozen, there is no ambiguity which can lead to

the customer requesting changes to the work although of course this can still happen!

The good news for the developer is that if changes are requested these can be viewed in

the context of additional work, for which they can be expect to be paid.

Customer Involvement

Note also in a "proper" system the customer will expect to be consulted as to how the

program will interact with the user, sometimes even down to the colour of the letters on

the display! Remember that one of the most dangerous things that a programmer can

think is "This is what he wants"! The precise interaction with the user - what the

program does when an error is encountered, how the information is presented etc., is

something which the customer is guaranteed to have strong opinions about. Ideally all

this information should be put into the specification, which should include layouts of

the screens and details of which keys should be pressed at each stage. Quite often

prototypes will be used to get a idea of how the program should look and feel.

Programming Languages Programming Languages

C# Programming © Rob Miles 2009 19

Fact: If you expect to derive

the specification as the

project goes on either you will

fail to do the job, or you will

end up performing five times

the work!

If this seems that you are getting the customer to help you write the program then you

are exactly right! Your customer may have expected you to take the description of the

problem and go into your back room - to emerge later with the perfect solution to the

problem. This is not going to happen. What will happen is that you will come up with

something which is about 60% right. The customer will tell you which bits look OK

and which bits need to be changed. You then go back into your back room, muttering

under your breath, and emerge with another system to be approved. Again, Rob's law

says that 60% of the duff 40% will now be OK, so you accept changes for the last

little bit and again retreat to your keyboard....

The customer thinks that this is great, reminiscent of a posh tailor who produces the

perfect fit after numerous alterations. All the customer does is look at something,

suggests changes and then wait for the next version to find something wrong with. They

will get a bit upset when the delivery deadline goes by without a finished product

appearing but they can always cheer themselves up again by suing you.

Fact: More implementations

fail because of inadequate

specification than for any

other reason!

If your insistence on a cast iron specification forces the customer to think about

exactly what the system is supposed to do and how it will work, all to the better. The

customer may well say "But I am paying you to be the computer expert, I know

nothing about these machines". This is no excuse. Explain the benefits of "Right First

Time" technology and if that doesn't work produce a revolver and force the issue!

Again, if I could underline in red I would: All the above apply if you are writing the

program for yourself. You are your own worst customer!

You may think that I am labouring a point here; the kind of simple systems we are

going to create as we learn to program are going to be so trivial that the above

techniques are far too long winded. You are wrong. One very good reason for doing

this kind of thing is that it gets most of the program written for you - often with the help

of the customer. When we start with our double glazing program we now know that we

have to:

read in the width

verify the value

read in the height

verify the value

calculate width times height times 2 and print it

calculate (width + height) * 2 * 3.25 and print it

The programming portion of the job is now simply converting the above description

into a language which can be used in a computer.......

Programmer’s Point:Good programmers are good communicators

The art of talking to a customer and finding out what he/she wants is just that, an art. If you want

to call yourself a proper programmer you will have to learn how to do this. One of the first things

you must do is break down the idea of "I am writing a program for you" and replace it with "We are

creating a solution to a problem". You do not work for your customers, you work with them. This is

very important, particularly when you might have to do things like trade with the customer on

features or price.

Programming Languages

Once we know what the program should do (specification), and how we are going to

determine whether it has worked or not (test) we now need to express our program in a

form that the computer can work with.

You might ask the question "Why do we need programming languages, why can we not

use something like English?" There are two answers to this one:

C# A look at C#

C# Programming © Rob Miles 2009 20

1. Computers are too stupid to understand English.

2. English would make a lousy programming language.

Please note that this does not

imply that tape worms would

make good programmers!

To take the first point. We cannot make very clever computers at the moment.

Computers are made clever by putting software into them, and there are limits to the

size of program that we can create and the speed at which it can talk to us. At the

moment, by using the most advanced software and hardware, we can make computers

which are about as clever as a tape worm. Tape worms do not speak very good

English, therefore we cannot make a computer which can understand English. The

best we can do is get a computer to make sense of a very limited language which we

use to tell it what to do.

Time Files like an Arrow.

Fruit Flies like a Banana!

To take the second point. English as a language is packed full of ambiguities. It is

very hard to express something in an unambiguous way using English, if you do not

believe me, ask any lawyer!

Programming languages get around both of these problems. They are simple enough to

be made sense of by computer programs and they reduce ambiguity.

Programmer’s Point:The language is not that important

There are a great many programming languages around, during your career you will have to learn

more than just one. C# is a great language to start programming in, but do not think that it is the

only language you will ever need.

C#

A look at C#

There are literally hundreds

of programming languages

around, you will need to know

at least 3!

We are going to learn a language called C# (pronounced C sharp). If you ever make

the mistake of calling the language C hash you will show your ignorance straight

away! C# is a very flexible and powerful programming language with an interesting

history. It was developed by Microsoft Corporation for a variety of reasons, some

technical, some political and others marketing.

C# bears a strong resemblance to the C++ and Java programming languages, having

borrowed (or improved) features provided by these languages. The origins of both Java

and C++ can be traced back to a language called C, which is a highly dangerous and

entertaining language which was invented in the early 1970s. C is famous as the

language the UNIX operating system was written in, and was specially designed for

this.

Dangerous C

I referred to C as a dangerous language. So what do I mean by that? Consider the chain

saw. If I, Rob Miles, want to use a chain saw I will hire one from a shop. As I am not an

experienced chain saw user I would expect it to come with lots of built in safety

features such as guards and automatic cut outs. These will make me much safer with the

thing but will probably limit the usefulness of the tool, i.e. because of all the safety stuff

I might not be able to cut down certain kinds of tree. If I was a real lumberjack I would

go out and buy a professional chain saw which has no safety features whatsoever but

can be used to cut down most anything. If I make a mistake with the professional tool I

could quite easily lose my leg, something the amateur machine would not let happen.

C# A look at C#

C# Programming © Rob Miles 2009 21

In programming terms this means is that C lacks some safety features provided by other

programming languages. This makes the language much more flexible.

However, if I do something stupid C will not stop me, so I have a much greater chance

of crashing the computer with a C program than I do with a safer language.

Programmer’s Point:Computers are always stupid

I reckon that you should always work on the basis that any computer will tolerate no errors on your

part and anything that you do which is stupid will always cause a disaster! This concentrates the

mind wonderfully.

Safe C#

The C# language attempts to get the best of both worlds in this respect. A C# program

can contain managed or unmanaged parts. The managed code is fussed over by the

system which runs it. This makes sure that it is hard (but probably not impossible) to

crash your computer running managed code. However, all this fussing comes at a price,

causing your programs to run more slowly.

To get the maximum possible performance, and enable direct access to parts of the

underlying computer system, you can mark your programs as unmanaged. An

unmanaged program goes faster, but if it crashes it is capable of taking the computer

with it. Switching to unmanaged mode is analogous to removing the guard from your

new chainsaw because it gets in the way.

C# and Objects

The C# language is object oriented. Objects are an organisational mechanism which let

you break your program down into sensible chunks, each of which is in charge of part

of the overall system. Object Oriented Design makes large projects much easier to

design, test and extend. It also lets you create programs which can have a high degree

of reliability and stability.

I am very keen on object oriented programming, but I am not going to tell you much

about it just yet. This is not because I don't know much about it (honest) but because I

believe that there are some very fundamental programming issues which need to be

addressed before we make use of objects in our programs.

The use of objects is as much about design as programming, and we have to know how

to program before we can design larger systems.

Making C# Run

You actually write the

program using some form of

text editor - which may be

part of the compiling and

running system.

C# is a compiled programming language. The computer cannot understand the

language directly, so a program called a compiler converts the C# text into the low

level instructions which are much simpler. These low level instructions are in turn

converted into the actual commands to drive the hardware which runs your program.

We will look in more detail at this aspect of how C# programs work a little later, for

now the thing to remember is that you need to show your wonderful C# program to

the compiler before you get to actually run it.

A compiler is a very large program which knows how to decide if your program is

legal. The first thing it does is check for errors in the way that you have used the

language itself. Only if no errors are found by the compiler will it produce any output.

The compiler will also flag up warnings which occur when it notices that you have

done something which is not technically illegal, but may indicate that you have made a

C# What Comprises a C# Program?

C# Programming © Rob Miles 2009 22

mistake somewhere. An example of a warning situation is where you create something

but don't use it for anything. The compiler would tell you about this, in case you had

forgotten to add a bit of your program.

The C# language is supplied with a whole bunch of other stuff (to use a technical term)

which lets C# programs do things like read text from the keyboard, print on the screen,

set up network connections and the like. These extra features are available to your C#

program but you must explicitly ask for them. They are then located automatically

when your program runs. Later on we will look at how you can break a program of your

own down into a number of different chunks (perhaps so several different programmers

can work on it).

Creating C# Programs

Microsoft has made a tool called Visual Studio, which is a great place to write

programs. It comprises the compiler, along with an integrated editor, and debugger.It is

provided in a number of versions with different feature sets. There is a free version,

called Visual Studio Express edition, which is a great place to get started. Another free

resources is the Microsoft .NET Framework. This provides a bunch of command line

tools, i.e. things that you type to the command prompt, which can be used to compile

and run C# programs. How you create and run your programs is up to you.

I'm not going to go into details of how to download and install the .NET framework;

that is for other documents, I am going to assume that you are using a computer which

has a text editor (usually Notepad) and the .NET framework installed.

The Human Computer

Of course initially it is best if we just work through your programs on paper. I reckon

that you write programs best when you are not sitting at the computer, i.e. the best

approach is to write (or at least map out) your solution on paper a long way away from

the machine. Once you are sitting in front of the keyboard there is a great temptation to

start pressing keys and typing something in which might work. This is not good

technique. You will almost certainly end up with something which almost works, which

you will then spend hours fiddling with to get it going.

If you had sat down with a pencil and worked out the solution first you would probably

get to a working system in around half the time.

Programmer’s Point:Great programmers debug less

I am not impressed by hacking programmers who spend whole days at terminals fighting with

enormous programs and debugging them into shape. I am impressed by someone who turns up, types

in the program and makes it work first time!

What Comprises a C# Program?

If your mum wanted to tell you how to make your favourite fruitcake she’d write the

recipe down on a piece of paper. The recipe would be a list of ingredients followed by a

sequence of actions to perform on them.

A program can be regarded as a recipe, but written for a computer to follow, not a

cook. The ingredients will be values (called variables) that you want your program to

work with. The program itself will be a sequence of actions (called statements) that are

to be followed by the computer. Rather than writing the program down on a piece of

paper you instead put it into a file on the computer, often called a source file.

This is what the compiler acts on. A source file contains three things:

C# What Comprises a C# Program?

C# Programming © Rob Miles 2009 23

 instructions to the compiler

 information about the structures which will hold the data to be stored and

manipulated.

 instructions which manipulate the data.

To take these in turn:

Controlling the Compiler

. The C# compiler needs to know certain things about your program. It needs to know

which external resources your program is going to use. It also can be told about any

options for the construction of your program which are important. Some parts of your

program will simply provide this information to tell the compiler what to do.

Storing the Data

Programs work by processing data. The data has to be stored within the computer

whilst the program processes it. All computer languages support variables of one form

or another. A variable is simply a named location in which a value is held whilst the

program runs. C# also lets you build up structures which can hold more than one item,

for example a single structure could hold all the information about a particular bank

customer. As part of the program design process you will need to decide what items of

data need to be stored. You must also decide on sensible names that you will use to

identify these items.

Describing the Solution

The actual instructions which describe your solution to the problem must also be part of

your program. A single, simple, instruction to do something is called a statement. A

statement is an instruction to perform one particular operation, for example add two

numbers together and store the result.

The really gripping thing about programs is that some statements can change which

statement is performed next, so that your program can look at things and decide what to

do. In the case of C# you can lump statements together to form a lump of program

which does one particular task. Such a lump is called a method.

Seasoned programmers break

down a problem into a

number of smaller ones and

make a method for each.

A method can be very small, or very large. It can return a value which may or may

not be of interest. It can have any name you like, and your program can contain as

many methods as you see fit. One method may refer to others. The C# language also

has a huge number of libraries available which you can use. These save you from

"re-inventing the wheel" each time you write a program. We will look at methods in

detail later in these notes.

Identifiers and Keywords

You give a name to each method that you create, and you try to make the name of the

function fit what it does, for example ShowMenu or SaveToFile. The C# language

actually runs your program by looking for a method with a special name, Main. This

function is called when your program starts running, and when Main finishes, your

program ends. The names that you invent to identify things are called identifiers. You

also create identifiers when you make things to hold values; woodLength might a

good choice when we want to hold the length of wood required. Later on we will look

at the rules and conventions which you must observe when you create identifiers.

The words which are part of the C# language itself are called keywords. In a recipe a

keyword would be things like "mix" or "heat" or "until". They would let you say things

like "heat sugar until molten" or "mix until smooth". In fact, you'll find that programs

look a lot like recipes. Keywords will appear blue in our listings.

A First C# Program The Program Example

C# Programming © Rob Miles 2009 24

A First C# Program

The Program Example

Perhaps the best way to start looking at C# is to jump straight in with our first ever C#

program. Here it is:

 Code Sample 1 - GlazerCalc Program

This is a valid program. If you gave it to a C# compiler it would compile, and you

could run it. The actual work is done by the two lines that I have highlighted. Broadly

speaking the stuff before these two lines is concerned with setting things up and getting

the values in to be processed. The stuff after the two lines is concerned with displaying

the answer to the user.

We can now go through each line in turn and try to see how it fits into our program.

using System;

A big part of learning to

program is learning how to

use all the additional features

of the system which support

your programs.

This is an instruction to the C# compiler to tell it that we want to use things from the

System namespace. A namespace is a place where particular names have meaning.

We have namespaces in our conversations too, if I am using the "Football"

namespace and I say "that team is really on fire" I'm saying something good. If I am

using the "Firefighter" namespace I'm saying something less good.

In the case of C# the System namespace is where lots of useful things are described.

One of these useful things provided with C# is the Console object which will let me

write things which will appear on the screen in front of the user. If I want to just refer to

this as Console I have to tell the compiler I'm using the System namespace. This

means that if I refer to something by a particular name the compiler will look in

using System;

class GlazerCalc

{

 static void Main()

 {

 double width, height, woodLength, glassArea;

 string widthString, heightString;

 widthString = Console.ReadLine();

 width = double.Parse(widthString);

 heightString = Console.ReadLine();

 height = double.Parse(heightString);

 woodLength = 2 * (width + height) * 3.25 ;

 glassArea = 2 * (width * height) ;

 Console.WriteLine ("The length of the wood is " +

 woodLength + " feet") ;

 Console.WriteLine("The area of the glass is " +

 glassArea + " square metres") ;

 }

}

A First C# Program The Program Example

C# Programming © Rob Miles 2009 25

System to see if there is anything matching that name. We will use other namespaces

later on.

class GlazerCalc

Classes are the basis of object

oriented programming, as we

shall see later.

A C# program is made up of one or more classes. A class is a container which holds

data and program code to do a particular job. In the case of our double glazing

calculator the class just contains a single method which will work out our wood

lengths and glass area, but a class can contain much more than that if it needs to.

You need to invent an identifier for every class that you create. I've called ours

GlazerCalc since this reflects what it does. For now, don't worry too much about

classes, just make sure that you pick sensible names for the classes that you create.

Oh, and one other thing. There is a convention that the name of the file which contains

a particular class should match the class itself, in other words the program above should

be held in a file called GlazerCalc.cs.

static

 This keyword makes sure that the method which follows is always present, i.e. the

word static in this context means "is part of the enclosing class and is always

here". When we get to consider objects we will find that this little keyword has all

kinds of interesting ramifications. But for now I'd be grateful if you'd just make sure

that you put it here in order to make your programs work properly.

void

 A void is nothing. In programming terms the void keyword means that the method

we are about to describe does not return anything of interest to us. The method will

just do a job and then finish. In some cases we write methods which return a result (in

fact we will use such a method later in the program).

However, in order to stop someone else accidentally making use of the value returned

by our Main method, we are explicitly stating that it returns nothing. This makes our

programs safer, in that the compiler now knows that if someone tries to use the value

returned by this method, this must be a mistake.

Main

You choose the names of your methods to reflect what they are going to do for you.

Except for Main. This method (and there must be one, and only one such method) is

where your program starts running. When your program is loaded and run the first

method given control is the one called Main. If you miss out the Main method the

system quite literally does not know where to start.

()

This is a pair of brackets enclosing nothing. This may sound stupid, but actually tells

the compiler that the method Main has no parameters. A parameter to a method gives

the method something to work on. When you define a method you can tell C# that it

works on one or more things, for example sin(x) could work on a floating point

value of angle x. We will cover methods in very great detail later in this document.

A First C# Program The Program Example

C# Programming © Rob Miles 2009 26

{

This is a brace. As the name implies, braces come in packs of two, i.e. for every open

brace there must be a matching close. Braces allow programmers to lump pieces of

program together. Such a lump of program is often called a block. A block can contain

the declaration of variable used within it, followed by a sequence of program statements

which are executed in order. In this case the braces enclose the working parts of the

method Main.

When the compiler sees the matching close brace at the end it knows that it has reached

the end of the method and can look for another (if any). The effects of an un-paired

brace are invariably fatal....

double

By now you probably feel that you need a drink. But that is not what double means in

this context. What it means is "double precision floating point number".

Our program needs to remember certain values as it runs. Notably it will read in values

for the width and height of the windows and then calculate and print values for the glass

area and wood length. C# calls the places where values are put variables. At the

beginning of any block you can tell C# that you want to reserve some space to hold

some data values. Each item you can hold a particular kind of value. Essentially, C# can

handle three types of data, floating point numbers, integer numbers and text (i.e. letters,

digits and punctuation). The process of creating a variable is called declaring the

variable.

A double variable can hold

a very wide range of values to

a very high precision.

You declare some variables of a particular type by giving the type of the data,

followed by a list of the names you want the variables to have. We are using the type

double for now. Later we will use other types.

width, height, woodLength, glassArea

This is a list. A list of items in C# is separated by , (comma) characters. In this case it

is a list of variable names. Once the compiler has seen the word double (see above) it

is expecting to find the name of at least one variable which is to be created. The

compiler works its way through the list, creating boxes which can hold floating point

values and giving them the appropriate names. From this point on we can refer to the

above names, and the compiler will know that we are using that particular variable.

Programmer’s Point:Know where your data comes from

In fact, given the limitations in the accuracy to which people can read tape measures, and the fact

that we are not going to make any windows as wide as the universe, a double precision floating point

number is probably overkill for this application. You would instead ask the customer if it is OK to

just express the dimensions in millimeters instead. We will look at the considerations driving the

choice of particular variable types a bit later on.

;

The semicolon marks the end of the list of variable names, and also the end of that

declaration statement. All statements in C# programs are separated by the ; character,

this helps to keep the compiler on the right track.

The ; character is actually very important. It tells the compiler where a given statement

ends. If the compiler does not find one of these where it expects to see one it will

A First C# Program The Program Example

C# Programming © Rob Miles 2009 27

produce an error. You can equate these characters with the sprocket holes in film, they

keep everything synchronised.

string widthString, heightString;

We have made some variables which can hold numbers. Now we are going to make

some which can contain strings. This is because when we read the numbers from our

user we first read them in as strings of text. We then convert the text into a number. The

variables widthString and heightString (note the sensible names) will

contain text versions of the numbers.

widthString =

This is an assignment statement. In this C# statement we are going to change the value

in a variable. Our program is going to read a line of text from the user and place the

result in the variable we have called widthString. Remember that a variable is

simply a named box of a particular size, which can hold a single data item (in this case

a string of text).

A good proportion of your programs will be instructions to assign new values to

variables, as the various results are calculated. C# uses the = character to make

assignments happen. The first part of this statement is the name of a previously defined

variable. This is followed by the = character which I call the gozzinta. I call it that

because the value on the right gozzinta (goes into) the variable on the left.

Console.

On the right of the equals we have the thing which is going to be assigned to

widthString. In this case the result is going to be the string returned by the method

ReadLine. This method is part of an object called Console .which looks after the

user input and output.

ReadLine

This indicates that the ReadLine method is to be invoked. This asks the running

program to dash off, do whatever statements there are in this method, and then come

back. Methods are a way in which you can break up your program into a number of

chunks, each of which has a particular job. They also mean that you only have to write

a particular piece of code once, put it in a method, and then call that method whenever

you want that particular job done. The C# system contains a number of built in methods

to do things for our programs. ReadLine is one of these.

When this program runs the ReadLine method is invoked (or called). It will wait for

the user to enter a line of text and press the Enter key. Whatever is typed in is then

returned as a string by the ReadLine method. The result of the method call is placed

in the widthString variable.

()

A method call is followed by the parameters to the method. A parameter is something

that is passed into a method for it to work on. Think of it as raw materials for a process

of some kind. In the case of ReadLine it has no raw materials, it is going to fetch the

information from the user console. However, we still have to tell the method call

something, even if it means there are no parameters being supplied

A First C# Program The Program Example

C# Programming © Rob Miles 2009 28

;

We have seen the semi-colon before. It marks the end of a statement in our program.

width =

This is another assignment (Mr. Phelps/Hawke
1
). The variable width is being given a

value. Many statements in your programs will simply be moving data around and

performing actions on it.

double.

But the rest of the statement looks a bit scary. In fact it is not too tricky. We are asking

Mr. double (the thing responsible holding double precision floating point numbers) to

do a little job for us. In this case the little job is "take the string held by

widthString and convert it into a double precision floating point number. Mr.

double provides this ability by exposing a method called Parse.

Note that there is nothing wrong or naughty about something in C# exposing its

methods. It is how we get things done for us. When you come to design larger programs

you will find that the best way to do this is to create components which expose

methods to get the job done. The whole of the C# library set is provided as a series of

methods and one of the things that you will have to get to grips with is where the

methods are and how to use them. As with many things in life, the trick is knowing who

to ask…

Parse

The Parse method has the job of converting the string it has been given into a double

precision floating point number. To do this it must look along the string, pull out each

digit in turn and then calculate the actual value, as in "12" means a ten and two units.

This process of looking along things is often called parsing. Hence the name of the

method we are using. The method is given the string that is to be parsed and returns the

number that it has found.

Note that this gives significant potential for evil, in that if the user doesn’t type in a

value , or types something like "Twenty Five" the Parse method call will not be able

to resolve a number and will fail as a result. How it fails, and how you can resolve this

failure, will be left for a future section in order to add more excitement to this

document.

(widthString);

We have seen that a call of a method must be followed by the raw materials

(parameters) for that method. In the case of ReadLine there are no parameters, but

we still need to supply an empty list to indicate this. In the case of Parse the method

needs to be given the string that it is to work on. We do this by putting the name of the

string variable containing the text (widthString) into the brackets as above. The

value of the information in widthString (i.e. the text that the user has typed in) is

passed into the Parse method for it to look at and extract the number from.

1
 Obscure movie/TV show reference for you there folks.

A First C# Program The Program Example

C# Programming © Rob Miles 2009 29

heightString = Console.ReadLine();

height = double.Parse(heightString);

These two statements simply repeat the process of reading in the text of the height value

and then converting it into a double precision value holding the height of the window.

woodLength = 2*(width + height)*3.25 ;

This is the actual nub of the program itself. This is the bit that does the work. It takes

the height and width values and uses them to calculate the length of wood required.

When I write programs I use

brackets even when the

compiler does not need them.

This makes the program

clearer.

The calculation is an expression much like above, this time it is important that you

notice the use of parenthesis to modify the order in which values are calculated in the

expression. Normally C# will work out expressions in the way you would expect, i.e.

all multiplication and division will be done first, followed by addition and

subtraction. In the above expression I wanted to do some parts first, so I did what you

would do in mathematics, I put brackets around the parts to be done first.

Note that I use a factor of 3.25 to allow for the fact that the customer wants the length

of wood in feet. There are around 3.25 feet in a meter, so I multiply the result in

meters by this factor.

The + and * characters in the expression are called operators in that they cause an

operation to take place. The other items in the expression are called operands. These

are what the operators work on.

glassArea = 2 * (width * height) ;

This line repeats the calculation for the area of the glass. Note that the area is given in

square meters, so no conversion is required. I've put one multiplication in brackets to

allow me to indicate that I am working out two times the area (i.e. for two panes of

glass). There is no need to do this particularly, but I think it makes it slightly clearer.

Console.WriteLine

This is a call of a method, just like the ReadLine method, except that this one takes

what it is given and then prints it out on the console.

(

This is the start of the parameters for this method call. We have seen these used in the

calls of Parse and also ReadLine

"The length of the wood is "

This is a string literal. It is a string of text which is literally just in the program. The

string of text is enclosed in double quote characters to tell the compiler that this is part

of a value in the program, not instructions to the compiler itself.

+

Plus is an addition operator. We have seen it applied to add two integers together.

However, the plus here means something completely different
2
. In this case it means

"add two strings together".

2
 Another TV show reference

A First C# Program The Program Example

C# Programming © Rob Miles 2009 30

You will have to get used to the idea of context in your programs. We have seen this

with namespaces. Here it is with operators. The C# system uses the context of an

operation to decide what to do. In the case of the previous +, between two double

precision floating point numbers it means "do a sum". Here it has a string on the left

hand side. This means that it is going to perform string concatenation rather than

mathematical addition.

woodLength

This is another example of context at work. Previously we have used woodLength as

a numeric representation of a value, in this program the length of the wood required.

However, in the context it is being used at the moment (added to the end of a string) it

cannot work like that.

The C# compiler must therefore ask the woodLength data item to convert itself into a

string so it can be used correctly in this position. Fortunately it can do this, and so the

program works as you would expect.

It is very important that you understand precisely what is going on here. Consider:

Console.WriteLine (2.0 + 3.0);

This would perform a numeric calculation (2.0 + 3.0) and produce a double precision

floating point value. This result value would then be asked to provide a string version

of itself to be printed, giving the output:

5

But the line of code:

Console.WriteLine ("2.0" + 3.0);

Would regard the + as concatenating two strings. It would ask the value 3 to convert

itself into a string (sounds strange – but this is what happens. It would then produce the

output:

2.03

The string "2.0" has the text of the value 3.0 added on the end. This difference in

behavior is all because of the context of the operation that is being performed.

You can think of all of the variables in our program being tagged with metadata (there

is that word again) which the compiler uses to decide what to do with them. The

variable heightString is tagged with information that says "this is a string, use a

plus with this and you concatenate". The variable woodLength is tagged with

metadata which says "this is a double precision floating point value, use a plus with this

and you perform arithmetic".

+ " feet"

Another concatenation here. We are adding the word feet on the end. Whenever I print

a value out I always put the units on the end. This makes it much easier to ensure that

the value makes sense.

)

The bracket marks the end of the parameter being constructed for the WriteLine

method call. When the method is called the program first assembles a completed string

out of all the components, adding (or concatenating) them to produce a single result. It

then passes the resulting string value into the method which will print it out on the

console.

A First C# Program The Program Example

C# Programming © Rob Miles 2009 31

;

The semi-colon marks the end of this statement.

}

Now for some really important stuff. The program is essentially complete. We have

added all the behaviours that we need. However, the compiler still needs to be told that

we have reached the end of the program. This first close brace marks the end of the

block of code which is the body of the Main method. A block of code starts with a {

and ends with a }. When the compiler sees this it says to itself "that is the end of the

Main method".

}

The second closing brace has an equally important job to the first. It marks the end of

the class GlazerCalc. In C# everything exists inside a class. A class is a container

for a whole bunch of things, including methods. If we want to (and we will do this later)

we may put a number of methods into a class. For now however, we only want the one

method in the class. And so we use the second closing brace to mark the end of the

class itself.

Programmer’s Point:Program layout is very important

You may have noticed the rather attractive layout that I have used when I wrote the program.

Items inside braces are indented so that it is very clear where they belong. I do not do this because

I find such listings artistically pleasing. I do it because otherwise I am just about unable to read

the program and make sense of what it does.

JustlikeIfindithardtoreadenglishwithouttheproperspacing I find it hard to read a program if it has

not been laid out correctly.

Punctuation

That marks the end of our program. One of the things that you will have noticed is that

there is an awful lot of punctuation in there. This is vital and must be supplied exactly

as C# wants it, otherwise you will get what is called a compilation error. This simply

indicates that the compiler is too stupid to make sense of what you have given it!

You will quickly get used to hunting for and spotting compilation errors, one of the

things you will find is that the compiler does not always detect the error where it takes

place, consider the effect of missing out a "(" character. However, note that just

because the compiler reckons your program is OK is no guarantee of it doing what you

want!

Another thing to remember is that the layout of the program does not bother the

compiler, the following is just as valid:

- although if anyone writes a program which is laid out this way they will get a smart

rap on the knuckles from me!

using System;class GlazerCalc{static void Main(){double width, height,

woodLength, glassArea;string widthString, heightString;widthString =

Console.ReadLine();width = double.Parse(widthString);heightString =

Console.ReadLine();height = double.Parse(heightString);woodLength = 2 * (width

+ height) * 3.25 ;glassArea = 2 * (width * height) ;Console.WriteLine (

"The length of the wood is " + woodLength + " feet") ;Console.WriteLine(

"The area of the class is " + glassArea + " square metres") ;}}

Manipulating Data Variables and Data

C# Programming © Rob Miles 2009 32

The grammar of programs is something you will pick up as we look at more and more

of them....

Manipulating Data

In this section we are going to take a look at how we can write programs that

manipulate data, how values can be stored, retrieved and generally fiddled with. This

provides us with the ability to perform the data processing part of programs.

Variables and Data

In the glazing program above we decided to hold the width and the height of the

windows that we are working on in variables that we described as double. Before we

can go much further in our programming career we need to consider just what this

means, and what other types of data we can store in programs that we write.

Programs operate on data. A programming language must give you a way of storing the

data you are processing, otherwise it is useless. What the data actually means is

something that you as programmer decide (see the above digression on data).

A variable is a named location where you can store something. You can think of it as a

box of a particular size with a name painted on the box. You chose the name to reflect

what is going to be stored there (we used sensible names like woodLength in the

above program). You also need to choose the type of the variable (particular size and

shape of box) from the range of storage types which C# provides. The type of the

variable is part of the metadata about that variable.

Programs also contain literal values. A literal value is just a value in your program

which you use for some purpose. For each type of variable the C# language has a way

in which literal values of that type are expressed.

Types of Variables

Storing Numbers

When considering numeric values there are two kinds of data:

 Nice chunky individual values, for example the number of sheep in a

field, teeth on a cog, apples in a basket. These are referred to as integers.

 Nasty real world type things, for example the current temperature, the

length of a piece of string, the speed of a car. These are referred to as

reals.

In the first case we can hold the value exactly; you always have an exact number of

these items, they are integral.

When you are writing a

specification you should

worry about the precision to

which values are to be held.

Too much accuracy may slow

the machine down - too little

may result in the wrong

values being used.

In the second case we can never hold what we are looking at exactly. Even if you

measure a piece of string to 100 decimal places it is still not going to give you its

exact length - you could always get the value more accurately. These are real. A

computer is digital, i.e. it operates entirely on patterns of bits which can be regarded

as numbers. Because we know that it works in terms of ons and offs it has problems

holding real values. To handle real values the computer actually stores them to a

limited accuracy, which we hope is adequate (and usually is).

Manipulating Data Types of Variables

C# Programming © Rob Miles 2009 33

This means that when we want to store something we have to tell the computer whether

it is an integer or a real. We also need to consider the range of possible values that we

need to hold so that we can choose the appropriate type to store the data.

 You tell C# about a variable you want to create by declaring it. The declaration also

identifies the type of the thing we want to store. Think of this as C# creating a box of

a particular size, specifically designed to hold items of the given type. The box is

tagged with some metadata (there is that word again) so that the system knows what

can be put into it and how that box can be used.

Storing integer values

Integers are the easiest type of value for the computer to store. Each value will map

onto a particular pattern of bits. The only issue is one of range. The bigger the value the

larger the number of bits that you need to represent it.

C# provides a variety of integer types, depending on the range of values you would like

to store:

sbyte 8 bits -128 to 127

byte 8 bits 0 to 255

short 16 bits -32768 to 32767

ushort 16 bits 0 to 65535

int 32 bits -2147483648 to 2147483647

uint 32 bits 0 to 4294967295

long 64 bits -9223372036854775808 to 9223372036854775807

ulong 64 bits 0 to 18446744073709551615

char 16 bits 0 to 65535

Note that we can go one

further negative than positive.

This is because the numbers

are stored using "2's

complement" notation

The standard integer type, int, can hold frighteningly large numbers in C#, in the

range -2,147,483,648 to 2,147,483,647 If you want to hold even larger integers than

this (although I've no idea why you'd want this) there is a long version.

An example of an int variable would be something which kept track of the number

of sheep in a field:

int numberOfSheep;

This creates a variable with could keep track of over two thousand million sheep! It

also lets a program manipulate "negative sheep" which is probably not meaningful

(unless you run a sheep bank of course and let people owe you them). Remember that

the language itself is unaware of any such considerations. If you want to make sure that

we never have more than 1,000 sheep and the number of sheep never goes negative you

must add this behaviour yourself.

Programmer’s Point:Check your own maths

Something else which you should bear in mind is that a program will not always detect when you

exceed the range of a variable. If I put the value 255 into a variable of type byte this is OK,

because 255 is the biggest possible value of the type can hold. However, if I add one to the value in

this variable the system may not detect this as an error. In fact this may cause the value to "wrap

round" to 0. Which could cause my program big problems.

Manipulating Data Types of Variables

C# Programming © Rob Miles 2009 34

integer literal values

An integer literal is expressed as a sequence of digits with no decimal point:

23

This is the integer value 23. I could use it in my program as follows:

numberOfSheep = 23 ;

If I am using one of the "shorter" types the literal value is regarded by the compiler as

being of that type:

sbyte tinyVal = 127;

In this statement the 127 is regarded as an sbyte literal, not an integer. This means

that if I do something stupid:

sbyte tinyVal = 128;

(the maximum value that an sbyte can hold is 127) the compiler will detect that I have

made a mistake and the program will not compile.

Storing real values

"Real" is a generic term for numbers which are not integers. They have a decimal point

and a fractional part. Depending on the value the decimal point floats around in the

number, hence the name. C#

C# provides a type of box which can hold a real number. A standard float value has

a range of 1.5E-45 to 3.4E48 with a precision of only 7 digits (i.e. not as good as most

pocket calculators).

If you want more precision (although of course your programs will be use up more

computer memory and run more slowly) you can use a double box instead (double is

an abbreviation for double precision). This is takes up more computer memory but it

has a range of 5.0E-324 to 1.7E308 and a precision of 15 digits.

An example of a float variable could be something which held the average price of ice

cream:

float averageIceCreamPriceInPence;

An example of a double variable could be something which held the width of the

universe in inches:

double univWidthInMeters;

Finally, if you want the ultimate in precision but require a slightly smaller range you

can use the decimal type. This uses twice the storage space of a double and holds

values to a precision of 28-29 digits. It is used in financial interest calculations.

decimal robsOverdraft;

real literal values

There are two ways in which you can store floating point numbers; as float or as

double. When it comes to putting literal values into the program itself the compiler

likes to know if you are writing a floating point value (smaller sized box) or double

precision (larger sized box).

A float literal can be expressed as a real number with an f after it:

2.5f

A double literal is expressed as a real number without the f:

Manipulating Data Types of Variables

C# Programming © Rob Miles 2009 35

3.5

You can also use exponents to express double and float values:

9.4605284E15

This is a double precision literal value which is actually the number of meters in a light

year. If you put an f on the end it becomes a floating point literal value.

Unlike the way that integers work, with real numbers the compiler is quite fussy about

how they can and can't be combined. This is because when you move a value from a

double precision variable into an ordinary floating point one some of the precision is

lost. This means that you have to take special steps to make sure that you as

programmer make clear that you want this to happen and that you can live with the

consequences. This process is known as casting and we will consider it in detail a bit

later in these notes.

Programmer’s Point:Simple variables are probably best

You will find that I, and most programmers, tend to use just integers and floating point variable

types. This may seem wasteful (it is most unlikely I'll ever need to keep track of two thousand

million sheep) but it makes the programs easier to understand.

Storing Text

Sometimes the information we want to store is text. This can be in the form of a single

character, at other times it will be a string. C# provides variables for looking after both

of these types of information:

char variables

A char is type of variable which can hold a single character. A character is what you get

when you press a key on a keyboard or display a single, er, character on the screen.

Note that C# can use a character set called UNICODE which can handle over 65,000

different character designs including a wide range of foreign characters.

An example of a character variable could be something which held the command key

that the user has just pressed:

char commandKey;

char literal values

You express a character by enclosing it in single quotes:

'A'

This means "the character A". It is what your program would get if you asked it to read

a character off the keyboard and the user held down shift and pressed A.

Character Escape Sequences

This leads to the question "How do we express the ' (single quote) character". This is

achieved by the use of an escape sequence. This is a sequence of characters which

starts with a special escape character. Escape in this context means "escape from the

normal hum-drum conventions of just meaning what you are and let's do something

special". The escape character is the \ (backslash) character. Possible escape sequences

are:

Manipulating Data Types of Variables

C# Programming © Rob Miles 2009 36

Character Escape Sequence name

\' Single quote

\" Double quote

\\ Backslash

\0 Null

\a Alert

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical quote

The effect of these escape sequences depends on the device you send them to. Some

systems will make a beep when you send the Alert character to them. Some clear the

screen when you send the Form feed character.

You can use them as follows:

char beep = '\a' ;

Note that the a must be in lower case.

Character code values

We have already established that the computer actually manipulates numbers rather

than actual letters. C# uses the Unicode standard to map characters onto numbers that

represent them. If you wish, you can express a character literal as a value from the

Unicode character set. The good news is that this gives you access to a huge range of

characters (as long as you know the codes for them). The bad news is that you must

express this value in hexadecimal which is a little bit harder to use than decimal. The

best news of all is that you probably don't need to do this kind of thing very often, if at

all.

As an example however, I happen to know that the Unicode value for capital a (A) is

65. This is represented in hexadecimal (base 16) as four sixteens and a single one (i.e.

41). I can therefore put this in my program as:

char capitalA = '\x0041' ;

Note that I had to put leading zeroes in front of the two hex digits.

string variables

A type of box which can hold a string of text. In C# a string can be very short, for

example "Rob", or it can be very long, for example "War and Peace" (that is the book

not the three words). A string variable can hold a line of text. However, because there

are special characters which mean "take a new line" (see above) it is perfectly possible

for a single string to hold a large number of lines of text.

An example of a string variable could be something which holds the line that the user

has just typed in:

Manipulating Data Types of Variables

C# Programming © Rob Miles 2009 37

string commandLine;

string literal values

A string literal value is expressed enclosed in double quotes:

"this is a string"

The string can contain the escape sequences above:

"\x0041BCDE\a"

If we print this string it would print out:

ABCDE

- and try to ring the bell.

If I am just expressing text with no escape characters or anything strange I can tell the

compiler that this is a verbatim string. I do this by putting an @ in front of the literal:

@"\x0041BCDE\a"

If I print this string I get:

\x0041BCDE\a

This can be useful when you are expressing things like file paths. The verbatim

character has another trick, which is that you can use it to get string literals to extend

over several lines:

@"The quick

brown fox

jumps over the lazy dog"

This expresses a string which extends over three lines. The line breaks in the string are

preserved when it is stored.

bool variables

A bool (short for boolean) variable is a type of box which can hold whether or not

something is true. Sometimes that is all you want. If you are storing whether or not a

subscription has been paid or not there is no need to waste space by using a type which

can hold a large number of possible values. Instead you just need to hold the states true

or false. These are the only two values which the bool type allows.

An example of a bool variable could be one which holds the state of a network

connection:

bool networkOK;

bool literal values

These are easily expressed as either true or false:

networkOK = true ;

Programmer’s Point:Think about the type of your variables

Choosing the right type for a variable is something of a skill. I tend to use floating point storage

only as a last resort. They introduce a lack of precision that I am not too keen on. I find that with a

little bit of ingenuity I can work in integers quite comfortably. For example, rather than store the

price of an item as 1.5 pounds (needing the use of float) I will store the price as 150 pence.

Manipulating Data Identifiers

C# Programming © Rob Miles 2009 38

Also when considering how to store data it is important to remember where it comes from. In the

example above I've used the double type to hold the width and height of a window. This is really

stupid. It does not take into account the precision required or indeed how accurately the window

can be measured. I would suspect that my glazing salesman will not be able to measure to an

accuracy greater than 1 mm and so it would make sense to only store the data to that precision.

This illustrates another metadata consideration, when you are given the prospect of storing floating

point information; find out how it is being produced before you decide how it will be stored. As an

example, you might think that being asked to work with the speed of a car you would have to store a

floating point value. However, when you find out that the speed sensor only gives answers to an

accuracy of 1 mile per hour, this makes the job much simpler.

Identifiers

In C# an identifier is a name that the programmer chooses for something in the

program. The name of a variable is more properly called an identifier. We will see

other places where we create identifiers. C# has some rules about what constitutes a

valid identifier:

 All identifiers names must start with a letter.

 After the letter you can have either letters or numbers or the underscore

"_" character.

Upper and lower case letters are different, i.e. Fred and fred are different identifiers.

Here are a few example declarations, one of which are not valid (see if you can guess

which one and why) :

int fred ;

float jim ;

char 29yesitsme ;

One of the golden rules of programming, along with "always use the keyboard with the

keys uppermost" is:

Always give your variables meaningful names.

According to the Mills and Boon romances that I have read, the best relationships are

meaningful ones.

The convention in C# for the kind of variables that we are creating at the moment is to

mix upper and lower case letters so that each word in the identifier starts with a capital:

float averageIceCreamPriceInPence;

This is sometimes called camel case, presumably because of the "humps" in the

identifier which are caused by the capitals.

Programmer’s Point:Think about the names of your variables

Choosing variable names is another skill you should work at. They should be long enough to be

expressive but not so long that your program lines get too complicated. Perhaps the name

averageIceCreamPriceInPence is a bit over the top in this respect. But I could live with it.

Remember that you can always do sensible things with your layout to make the program look OK:
 averageIceCreamPriceInPence =

 computedTotalPriceInPence / numberOfIceCreams;

Manipulating Data Giving Values to Variables

C# Programming © Rob Miles 2009 39

Giving Values to Variables

Once we have got ourselves a variable we now need to know how to put something into

it, and get the value out. C# does this by means of an assignment statement. There are

two parts to an assignment, the thing you want to assign and the place you want to put

it, for example consider the following:

class Assignment {

 static void Main ()

 {

 int first, second, third ;

 first = 1 ;

 second = 2 ;

 second = second + first ;

 }

}

The first part of the program should be pretty familiar by now. Within the Main

function we have declared three variables, first, second and third. These are

each of integer type.

The last three statements are the ones which actually do the work. These are assignment

statements. An assignment gives a value to a specified variable, which must be of a

sensible type (note that you must be sensible about this because the compiler, as we

already know, does not know or care what you are doing). The value which is assigned

is an expression. The equals in the middle is there mainly to confuse us, it does not

mean equals in the numeric sense; I like to think of it as a gozzinta (see above).

Gozzintas take the result on the right hand side of the assignment and drop it into the

box on the left, which means that:

2 = second + 1;

- is a piece of programming naughtiness which would cause all manner of nasty errors

to appear.

Expressions

An expression is something which can be evaluated to produce a result. We can then

use the result as we like in our program. Expressions can be as simple as a single value

and as complex as a large calculation. They are made up of two things, operators and

operands.

Operands

Operands are things the operators work on. They are usually literal values or the

identifiers of variables. In the program above first, second, third are identifiers

and 2 is a literal value. A literal value is something which is literally there in the code.

A literal value has a type associated with it by the compiler.

Operators

Operators are the things which do the work: They specify the operation to be performed

on the operands. Most operators work on two operands, one each side. In the program

above + is the only operator.

Here are a few example expressions:

2 + 3 * 4

-1 + 3

(2 + 3) * 4

These expressions are worked out (evaluated) by C# moving from left to right, just as

you would yourself. Again, just as in traditional maths all the multiplication and

division is performed first in an expression, followed by the addition and subtraction.

Manipulating Data Changing the Type of Data

C# Programming © Rob Miles 2009 40

C# does this by giving each operator a priority. When C# works out an expression it

looks along it for all the operators with the highest priority and does them first. It then

looks for the next ones down and so on until the final result is obtained. Note that this

means that the first expression above will therefore return 14 and not 20.

If you want to force the order in which things are worked out you can put brackets

around the things you want done first, as in the final example. You can put brackets

inside brackets if you want, provided you make sure that you have as many open ones

as close ones. Being a simple soul I tend to make things very clear by putting brackets

around everything.

It is probably not worth getting too worked up about this expression evaluation as posh

people call it; generally speaking things tend to be worked out how you would expect

them.

For completeness here is a list of all operators, what they do and their precedence

(priority). I am listing the operators with the highest priority first.

op. Use

- unary minus, the minus that C# finds in negative numbers, e.g. -1.

Unary means applying to only one item.

* multiplication, note the use of the * rather than the more

mathematically correct but confusing x.

/ division, because of the difficulty of drawing one number above

another on a screen we use this character instead

+ Addition.

- subtraction. Note that we use exactly the same character as for unary

minus.

This is not a complete list of all the operators available, but it will do for now. Because

these operators work on numbers they are often called the numeric operators. But of

course you should remember that some of them (for example +) can be used between

other types of data as well. It is also possible to use operators in a way which causes

values to be moved from one type to another. This can cause problems as we shall see

now:

Changing the Type of Data

Whenever I move a value from one type to another the C# compiler gets very interested

in what I am doing. It worries about whether or not the operation I'm about to perform

will cause data to be lost from the program. It considers every operation in terms of

"widening and narrowing" values.

Widening and Narrowing

The general principle which C# uses is that if you are "narrowing" a value it will always

ask you to explicitly tell it that this is what you want to do. If you are widening there is

no problem.

To understand what we mean by these terms we could consider suitcases. If I am

packing for a trip I will take a case. If I decide to switch to a smaller case I will have to

take everything out of the large case and put it into the smaller one. But it might not

have room, so I have to leave behind one of my shirts. This is "narrowing".

However, if I change to a bigger case there is no problem. The bigger case will take

everything that was in the smaller case, and have room for more.

Manipulating Data Changing the Type of Data

C# Programming © Rob Miles 2009 41

In C# terms the "size" of a type is the range of values (the biggest and smallest) and the

precision (the number of decimal places). This means that if I write:

int i = 1 ;

float x = i;

This works fine because the floating point type can hold all the values supported by the

integer type. However:

float x = 1;

int i = x ;

- would cause the compiler to complain (even though at the moment the variable x only

holds an integer value). The compiler is concerned that you may be discarding

information by such an assignment and treats it as an error.

Note that this applies within a floating point values as well, for example:

double d = 1.5;

float f = d ;

- would cause an error as well, since the compiler knows that a double is wider than a

float.

Casting

We can force C# to regard a value as being of a certain type by the use of casting. A

cast takes the form of an additional instruction to the compiler to force it to regard a

value in a particular way. You cast a value by putting the type you want to see there in

brackets before it. For example:

double d = 1.5;

float f = (float) d ;

In the above code the message to the compiler is "I don't care that this assignment could

cause the loss of information. I, as the writer of the program, will take the responsibility

of making sure that the program works correctly". You can regard casting as the

compiler's way of washing its hands of the problem. If a program fails because data is

lost it is not because the compiler did something silly.

As we saw above, each type of variable has a particular range of possible values, and

the range of floating point values is much greater than that for integers. This means that

if you do things like this:

int i ;

i = (int) 123456781234567890.999 ;

I do not think of this as a

failing in C#. It gives you

great flexibility, at the cost of

assuming you know what you

are doing....

- the cast is doomed to fail. The value which gets placed in i will be invalid.

Nowhere in C# does the language check for mistakes like this. It is up to you when

you write your program to make sure that you never exceed the range of the data

types you are using - the program will not notice but the user certainly will!

A cast can also lose information in other ways:

int i ;

i = (int) 1.999 ;

The code above takes 1.999 (which would be compiled as a value of type double)

and casts it to int. This process discards the fractional part, which means that the

variable I will end up with the value 1 in it, even though the original number was much

closer to 2. You should remember that this truncation takes place whenever you cast

from a value with a fractional part (float, double, decimal) into one without.

Manipulating Data Types of Data in Expressions

C# Programming © Rob Miles 2009 42

Casting and Literal Values

We have seen that you can put "literal" values into your program. These are just values

you want to use in your calculations. For example, in our double glazing program we

had to multiply the wood length in meters by 3.25 to convert the length value from

meters to feet (there are about 3.25 feet in a meter).

C# keeps careful track of the things that it is combining, and this includes how it allows

literal values to be used. This is so that statements like:

int i ;

i = 3.4 / "stupid" ;

- will be treated with the contempt they richly deserve. The C# compiler knows that it is

daft to divide the value 3.0 by the string "stupid". However, consider this:

float x ;

x = 3.4 ;

This code looks perfectly legal. However, it is not. This is because the literal value 3.4

is a double precision value when expressed as a literal, and the variable x has been

declared as a floating point. If I want to put a floating point literal value into a floating

point variable I can use casting:

float x ;

x = (float) 3.4 ;

This casts the double precision literal into a floating point value, so that the assignment

works.

To make life easier the creators of C# have added a different way we can express a

floating point literal value in a program. If you put an f after the value this is regarded

as a floating point value. This means that:

float x ;

x = 3.4f ;

- would compile correctly.

Types of Data in Expressions

When C# uses an operator, it makes a decision as to the type of the result that is to be

produced. Essentially, if the two operands are integer, it says that the result should be

integer, if the two are floating point, it says that the result should be floating point. This

can lead to problems, consider the following:

1/2

1/2.0

You might think that these would give the same result. Not so. The compiler thinks that

the first expression, which involves only integers, should give an integer result. It

therefore would calculate this to be the integer value 0 (the fractional part is always

truncated). The second expression, because it involves a floating point value would

however be evaluated to give a double precision floating point result, the more accurate

answer of 0.5.

The way that an operator behaves depends on the context of its use. Later on we will

see that the + operator, which normally performs a numeric calculation, can be used

between strings to concatenate them together, i.e. "Ro" + "b" would give the result

"Rob".

If you want complete control over the particular kind of operator the compiler will

generate for you the program must contain explicit casts to set the correct context for

the operator.

Manipulating Data Programs and Patterns

C# Programming © Rob Miles 2009 43

using System;

class CastDemo {

 static void Main ()

 {

 int i = 3, j = 2 ;

 float fraction ;

 fraction = (float) i / (float) j ;

 Console.WriteLine ("fraction : " + fraction) ;

 }

}

The (float) cast in the above tells the compiler to regard the values in the integer

variables as floating point ones, so that we get 1.5 printed out rather than 1.

Programmer’s Point:Casts can add clarity

I tend to put the casts in even if they are not needed, this can make the program clearer. It may

not affect the result of the calculation but it will inform the reader of what I am trying to do.

Programs and Patterns

At this point we can revisit our double glazing program and look at the way that it

works. The code that actually does the work boils down to just a few lines which read

in the data, store it in an appropriate type of location and then uses the stored values to

calculate the result that the user requires:

string widthString = Console.ReadLine();

double width = double.Parse(widthString);

string heightString = Console.ReadLine();

height = double.Parse(heightString);

woodLength = 2 * (width + height) * 3.25 ;

glassArea = 2 * (width * height) ;

Console.WriteLine ("The length of the wood is " +

 woodLength + " feet") ;

Console.WriteLine("The area of the class is " +

 glassArea + " square metres") ;

The interesting thing about this is that it is a pattern of behaviour which can be reused

time and time again.

As an example, consider another friend of yours, who runs a chemist shop. He wants a

program that will work out the total cost of tablets that he buys, and the number of

bottles that he needs. He enters the cost of the tablets and the number he wants. The

tablets are always sold in bottles of 100.

You can very easily modify your program to do this job, the only hard part is figuring

out how many bottles that are needed for a particular number of tablets. If you just

divide the number of tablets by 100 an integer division will give you the wrong answer

(for any number of tablets less than 100 your program will tell you that 0 bottles are

needed). One way to solve this is to add 99 to the number of tablets before you

perform the division, forcing the number of bottles required to "round up" any number

of tablets greater than 0. This makes the active part of the program as follows:

int bottleCount = ((tabletCount + 99) / 100) ;

int salePrice = bottleCount * pricePerBottle ;

We can then put the rest of the code around this to make a finished solution:

Writing a Program Software as a story

C# Programming © Rob Miles 2009 44

string pricePerBottleString = Console.ReadLine();

int pricePerBottle = int.Parse(pricePerBottleString);

string tabletCountString = Console.ReadLine();

int tabletCount = int.Parse(tabletCountString);

int bottleCount = ((tabletCount + 99) / 100) ;

int salePrice = bottleCount * pricePerBottle ;

Console.WriteLine ("The number of bottles is " +

 bottleCount) ;

Console.WriteLine("The total price is " +

 salePrice) ;

[Remember that if you divide two integers the result is always rounded down and the

fractional part discarded.]

The interesting thing here is that the program for the chemist is actually just a variation

on the program for the double glazing salesman. Both conform to a pattern of

behaviour (read data in, process it, print it out) which is common to many applications.

Any time that you are asked to write a program that reads in some data, works out some

answers and then prints out the result you can make use of this pattern.

Part of the skill of a programmer is identifying the nature of a problem in terms of the

best pattern to be used to solve it.

Writing a Program

The programs that we have created up until now have been very simple. They just read

data in, do something with it and then print out the result. However, we will need to

create programs which do things which are more complex that this. They may have to

make a decision based on the data which they are given. They may need to repeat things

until something is true. They may need to read in a large amount of data and then

process that in a number of different ways.

In this section we are going to consider how we can give our programs that extra level

of complexity, and look at the general business of writing programs.

Software as a story

Some people say that writing a program is a bit like writing a story. I'm not completely

convinced that this is true. I have found that some computer manuals are works of

fiction, but programs are something else. I think that while it is not a story as such, a

good program text does have some of the characteristics of good literature:

 It should be easy to read. At no point should the hapless reader be forced to

backtrack or brush up on knowledge that the writer assumes is there. All the

names in the text should impart meaning and be distinct from each other.

 It should have good punctuation and grammar. The various components

should be organised in a clear and consistent way.

 It should look good on the page. A good program is well laid out. The

different blocks should be indented and the statements spread over the page in

a well formed manner.

 It should be clear who wrote it, and when it was last changed. If you write

something good you should put your name on it. If you change what you wrote

you should add information about the changes that you made and why.

Writing a Program Program Flow

C# Programming © Rob Miles 2009 45

Comments

A big part of a well written program is the comments that the programmer puts there. A

program without comments is a bit like an aeroplane which has an autopilot but no

windows. There is a chance that it might take you to the right place, but it will be very

hard to tell where it is going from the inside.

Block Comments

When the C# compiler sees the "/*" sequence which means the start of a comment it

says:

Aha! Here is a piece of information for greater minds than mine to ponder. I will

ignore everything following until I see a */ which closes the comment.

As an example:

/* This program works out glass and wood required for

 a double glazing salesman. */

Be generous with your comments. They help to make your program much easier to

understand. You will be very surprised to find that you quickly forget how you got your

program to work. You can also use comments to keep people informed of the particular

version of the program, when it was last modified and why, and the name of the

programmer who wrote it - if you dare!

Line Comments

Another form of comment makes use of the // sequence. This marks the start of a

comment which extends to the end of that particular line of code. It is useful for putting

a quick note on the end of a statement:

position = position + 1 ; //move on to the next customer

I've annotated the statement to give the reader extra information about what it actually

does.

Programmer’s Point:Don't add too much detail

Writing comments is a very sensible thing to do. But don't go mad. Remember that the person who is

reading your program can be expected to know the C# language and doesn't need things explained

to them in too much detail:

 goatCount = goatCount + 1 ; // add one to goatCount

This is plain insulting to the reader I reckon. If you chose sensible identifiers you should find that

your program will express most of what it does directly from the code itself.

Program Flow

Our first double glazing program is very simple, it runs straight through from the first

statement to the last, and then stops. Often you will come across situations where your

program must change what it does according to the data which is given to it. Basically

there are three types of program flow:

1. straight line

2. chosen depending on a given condition

3. repeated according to a given condition

Writing a Program Program Flow

C# Programming © Rob Miles 2009 46

Every program ever written is composed of the three elements above, and very little

else! You can use this to good effect when designing an overall view of how your

program is going to work. At the moment we have only considered programs which run

in a straight line and then stop. The path which a program follows is sometimes called

its "thread of execution". When you call a function the thread of execution is

transferred into the function until it is complete.

Conditional Execution - if

The program above to work out the wood and glass for our glazing man is nice, in fact

our customer will probably be quite pleased with it. However, it is not perfect. The

problem is not with the program, but with the user.

If you give the program a window width of -1 it goes ahead and works out a stupid

result. Our program does not have any checking for invalid widths and heights. The

user might have grounds for complaint if the program fails to recognise that he has

given a stupid value, in fact a number of cases are currently being fought in the United

States courts where a program has failed to recognise invalid data, produced garbage

and caused a lot of damage.

What we want to do is notice the really stupid replies and tell the user that he has done

something dubious. In our program specification, which we give the customer, we have

said something like (this is our metadata):

The program will reject window dimensions outside the following ranges:

width less than 0.5 metres

width greater than 5.0 metres

height less than 0.75 metres

height greater than 3.0 metres

This means that we have done all we can; If the program gets 1 rather than 10 for the

width then that is the users' problem, the important thing from our point of view is that

the above specification stops us from being sued!

In order to allow us to do this the program must notice naughty values and reject them.

To do this we can use the construction:

if (condition)

 statement or block we do if the condition is true

else

 statement or block we do if the condition is false

The condition determines what happens in the program. So what do we mean by a

condition? C# has a way in which true and false can be explicitly stated in a program.

We have already seen that the bool type is used to store this logical state.

We can create conditions which return a logical result. These are called "logical

conditions". Which is logical. The simplest condition is simply the value true or false,

for example:

if (true)

{

 Console.WriteLine ("hello mum") ;

}

This is valid, although rather useless as the condition is always true, so "hello mum"

is always printed (note that we left the else portion off - this is OK because it is

optional).

Conditions and Relational Operators

To make conditions work for us we need a set of additional relational operators which

we can use to in logical expressions. Relational operators work on operands, just like

Writing a Program Program Flow

C# Programming © Rob Miles 2009 47

numeric ones. However any expression involving them can only produce one of two

values, true or false. Relational operators available are as follows:

==

equals. If the left hand side and the right hand side are equal the expression has the

value true. If they are not equal the value is false.

4 == 5

- would evaluate to false. Note that it is not particularly meaningful to compare

floating point values in this way. Because of the fact that they are held to limited

precision you might find that conditions fail when they should not for example the

following equation:

x = 3.0 * (1.0 / 3.0) ;

- may well result in x containing 0.99999999, which would mean that:

x == 1.0

If you want to compare

floating point values subtract

them and see if the difference

is very small.

- would be false - even though mathematically the test should return true.

!=

not equal. The reverse of equals. If the operands are not equal the expression has the

value true, if they are equal it has the value false. Again, this test is not advisable

for use with floating point numbers.

<

less than. If the operand on the left is less than the one on the right the value of the

expression is true. If the left hand operand is larger than or equal to the right hand

one the expression gives false. It is quite valid to compare floating point numbers in

this way.

>

greater than. If the operand on the left is greater than the one on the right the result is

true. If the operand on the left is less than or equal to the one on the right the result is

false.

<=

less than or equal to. If the operand on the left is less than or equal to the one on the

right you get true, otherwise you get false.

>=

greater than or equal to. If the operand on the left is greater than or equal to the one on

the right you get true, otherwise it is false.

!

not. This can be used to invert a particular value or expression, for example you can say

!true, which is false, or you could say: !(x==y) - which means the same as

(x!=y). You use not when you want to invert the sense of an expression.

Writing a Program Program Flow

C# Programming © Rob Miles 2009 48

Combining Logical Operators

Sometimes we want to combine logical expressions, to make more complicated choices,

for example to test for a window width being valid we have to test that it is greater than

the minimum and less than the maximum. C# provides additional operators to combine

logical values:

&&

and. If the operands each side of the && are true the result of the && is true. If one of

them is false the result is false, for example

 (width > 0.5) && (width < 5.0)

- this would be true if the width was valid according to our above description.

||

or. If either of the operands each side of the || are true the result of the expression is

true. The expression is only false if both operands are false, for example:

 (width <= 0.5) || (width >= 5.0)

De Morgans theorem is the

basis of this.

- this would be true if the width was invalid. We are saying that the width is invalid if

it is less than the minium or larger than the maximum. Note that to reverse the sense

of the condition (i.e. true when the value is invalid) we not only have to change the >

into <= in each expression, but also change the && into an ||.

Using these operators in conjunction with the if statement we can make decisions and

change what our program will do in response to the data we get.

Programmer’s Point:Break down your conditions

If you find that you are making huge and complicated conditions to get a statement obeyed you

might find that you can make things clearer by using more than one if statement, and indenting the

code in an appropriate way. This will make the code easier to debug as well, because you can watch

the program step through your conditions one at a time, instead of going off in a particular

direction based on a huge condition you will then have to unpick.

Lumping Code Together

We have decided that if the user gives a value outside our allowed range an error is

generated and the value is then set to the appropriate maximum or minimum. To do this

we have to do two statements which are selected on a particular condition, one to print

out the message and the other to perform an assignment. You can do this by using the {

and } characters. A number of statements lumped together between { and } characters

is regarded as a single statement, so we do the following:

if (width > 5.0){

 Console.WriteLine ("Width too big,using maximum\n") ;

 width = 5.0 ;

}

The two statements are now a block, which is performed only if width is greater than

5.0. You can lump many hundreds of statements together in this way, the compiler

does not mind. You can also put such blocks of code inside other blocks, this is called

nesting.

The number of { and } characters must agree in your program, otherwise you will get

strange and incomprehensible errors when the compiler hits the end of the file in the

middle of a block or reaches the end of your program half way down your file!

Writing a Program Program Flow

C# Programming © Rob Miles 2009 49

I make things much easier to understand by indenting a particular block by a number of

spaces, i.e. each time I open a block with the { character I move my left margin in a

little way. I can then see at a glance whereabouts I am in the levels at any time.

Metadata, Magic Numbers and const

A magic number is a value with a special meaning. It will never be changed within the

program; it is instead a constant which is used within it. When I write my glazing

program I will include some magic numbers which give the maximum and minimum

values for heights and widths. These come from the metadata I was so careful to gather

when I wrote the specification for the program.

Now I could just use the values 0.5, 5.0, 0.75 and 3.0 - but these are not packed

with meaning and make the program hard to change. If, for some reason, my maximum

glass size becomes 4.5 metres I have to look all through the program and change only

the appropriate values. I do not like the idea of "magic numbers" in programs, what I

would like to do is replace each number with something a bit more meaningful.

We can do this by making a variable which is constant, i.e. it is never changed.

const double PI=3.141592654;

This means that you can do things like:

circ = rad * 2 * PI ;

This both more meaningful (we are using PI not some anonymous value) and makes the

program quicker to write. Anywhere you use a magic number you should use a constant

of this form, for example:

const double MAX_WIDTH 5.0 ;

This makes your programs much easier to read, and also much easier to change.

There is a convention that you always give constant variables names which are

expressed in CAPITAL LETTERS. This is so that when you read your program you

can tell which things have been defined.

We can therefore modify our double glazing program as follows:

using System;

class GlazerCalc

{

 static void Main()

 {

 double width, height, woodLength, glassArea;

 const double MAX_WIDTH = 5.0 ;

 const double MIN_WIDTH = 0.5 ;

 const double MAX_HEIGHT = 3.0 ;

 const double MIN_HEIGHT = 0.75 ;

 string widthString, heightString;

 Console.Write ("Give the width of the window : ");

 widthString = Console.ReadLine();

 width = double.Parse(widthString);

 if (width < MIN_WIDTH) {

 Console.WriteLine ("Width is too small") ;

 Console.WriteLine ("Using minimum") ;

 width = MIN_WIDTH ;

 }

 if (width > MAX_WIDTH) {

 Console.WriteLine ("Width is too large.\n\n") ;

Writing a Program Loops

C# Programming © Rob Miles 2009 50

 Console.WriteLine ("Using maximum") ;

 width = MAX_WIDTH ;

 }

 Console.Write ("Give the height of the window : ");

 heightString = Console.ReadLine();

 height = double.Parse(heightString);

 if (height < MIN_HEIGHT) {

 Console.WriteLine("Height is too small.\n\n") ;

 Console.WriteLine ("Using minimum") ;

 height = MIN_HEIGHT ;

 }

 if (height > MAX_HEIGHT) {

 Console.WriteLine("Height is too large.\n\n") ;

 Console.WriteLine ("Using maximum") ;

 height = MAX_HEIGHT ;

 }

 woodLength = 2 * (width + height) * 3.25 ;

 glassArea = 2 * (width * height) ;

 Console.WriteLine ("The length of the wood is " +

 woodLength + " feet") ;

 Console.WriteLine("The area of the class is " +

 glassArea + " square metres") ;

 }

}

This program fulfils our requirements. It will not use values incompatible with our

specification. However I would still not call it perfect. If our salesman gives a bad

height the program simply limits the value and needs to be re-run, with the height

having to be entered again.

What we would really like is a way that we can repeatedly fetch values for the width

and height until we get one which fits. C# allows us to do this by providing looping

constructions.

Loops

Conditional statements allow you to do something if a given condition is true. However

often you want to repeat something while a particular condition is true, or a given

number of times.

C# has three ways of doing this, depending on precisely what you are trying to do. Note

that we get three methods not because we need three but because they make life easier

when you write the program (a bit like an attachment to our chainsaw to allow it to

perform a particular task more easily). Most of the skill of programming involves

picking the right tool or attachment to do the job in hand. (the rest is finding out why

the tool didn't do what you expected it to!).

In the case of our program we want to repeatedly get numbers in until while we are

getting duff ones, i.e. giving a proper number should cause our loop to stop. This means

that if we get the number correctly first time the loop will execute just once. You might

think that I have pulled a fast one here; all I have done is change:

 Get values until you see one which is OK

into

 Get values while they are not OK

Part of the art of programming is changing the way that you think about the problem to

suit the way that the programming language can be told to solve it.

Writing a Program Loops

C# Programming © Rob Miles 2009 51

do -- while loop

In the case of our little C# program we use the do -- while construction which looks like

this:

do

 statement or block

while (condition) ;

This allows us to repeat a chunk of code until the condition at the end becomes false.

Note that the test is performed after the statement or block, i.e. even if the test is bound

to fail the statement is performed once.

A condition in this context is exactly the same as the condition in an if statement,

raising the intriguing possibility of programs like:

using System;

class Forever {

 public static void Main () {

 do

 Console.WriteLine ("Hello mum") ;

 while (true);

 }

}

This is a perfectly legal C# program. How long it will run for is an interesting question,

the answer contains elements of human psychology, energy futures and cosmology, i.e.

it will run until:

1. You get bored with it.

2. Your electricity runs out.

3. The universe implodes.

This is a chainsaw situation, not a powerful chainsaw situation. Just as it is possible

with any old chainsaw to cut off your leg if you try really hard so it is possible to use

any programming language to write a program which will never stop. It reminds me of

my favourite shampoo instructions:

1. Wet Your Hair

2. Add Shampoo and Rub vigorously.

3. Rinse with warm water.

4. Repeat.

I wonder how many people there are out there still washing their hair at the moment?

while loop

Sometimes you want to decide whether or not to repeat the loop before you perform it.

If you think about how the loop above works the test is done after the code to be

repeated has been performed once. For our program this is exactly what we want, we

need to ask for a value before we can decide whether or not it is valid. In order to be as

flexible as possible C# gives us another form of the loop construction which allows us

to do the test first:

while (condition)

 statement or block

Note that C makes an attempt to reduce the number of keys you need to press to run the

program by leaving out the word do. (if you put the do in the compiler will take great

delight in giving you an error message - but you had already guessed that of course!).

Writing a Program Loops

C# Programming © Rob Miles 2009 52

for loop

Often you will want to repeat something a given number of times. The loop

constructions we have given can be used to do this quite easily:

using System;

class WhileLoopInsteadOfFor {

 public static void Main () {

 int i ;

 i = 1 ;

 while (i < 11) {

 Console.WriteLine ("Hello mum") ;

 i = i + 1 ;

 }

 }

}

The variable which controls

things is often called the

control variable, and is

usually given the name i.

This useless program prints out hello 10 times. It does this by using a variable to

control the loop. The variable is given an initial value (1) and then tested each time

we go around the loop. The control variable is then increased for each pass through

the statements. Eventually it will reach 11, at which point the loop terminates and

our program stops.

C# provides a construction to allow you to set up a loop of this form all in one:

for (setup ; finish test ; update) {

 things we want to do a given

 number of times

}

We could use this to re-write the above program as:

using System;

class ForLoop {

 public static void Main () {

 int i ;

 for (i = 1 ; i < 11 ; i = i + 1) {

 Console.WriteLine ("Hello mum") ;

 }

 }

}

The setup puts a value into the control variable which it will start with. The test is a

condition which must be true for the for -- loop to continue. The update is the statement

which is performed to update the control variable at the end of each loop. Note that the

three elements are separated by semicolons. The precise sequence of events is as

follows:

1. Put the setup value into the control variable.

2. Test to see if we have finished the loop yet and exit to the statement after

the for loop if we have.

3. Perform the statements to be repeated.

4. Perform the update.

5. Repeat from step 2.

Writing a loop in this way is quicker and simpler than using a form of while because

it keeps all the elements of the loop in one place instead of leaving them spread about

the program. This means that you are less likely forget to do something like give the

control variable an initial value, or update it.

If you are so stupid as to mess around with the value of the control variable in the loop

you can expect your program to do stupid things, i.e. if you put i back to 0 within the

loop it will run forever. And serve you right.

Writing a Program Loops

C# Programming © Rob Miles 2009 53

Programmer’s Point:Don't be clever/stupid

Some people like to show how clever they are by doing cunning things with the setup, condition and

update statements, which can do things other than simple assignment, increment and test. Some

programmers think they are very clever if they can do all the work "inside" the for loop and have an

empty statement after it.

I call these people "the stupid people". There is rarely need for such convoluted code. When you are

writing programs the two things which you should be worrying about are "how do I prove this

works?" and "how easy is it to understand?" Complicated code does not help you do either of these

things.

Breaking Out of Loops

Sometimes you may want to escape from a loop whilst you are in the middle of it, i.e.

your program may decide that there is no need or point to go on and wishes to leap out

of the loop and continue the program from the statement after it.

You can do this with the break statement. This is a command to leave the loop

immediately. Your program would usually make some form of decision to quit in this

way. I find it most useful so that I can provide a "get the heck out of here" option in the

middle of something, for example in the following program snippet the variable

aborted, normally false becomes true when the loop has to be abandoned and

the variable runningOK, normally true, becomes false when it is time to finish

normally.

while (runningOK) {

 complex stuff

 if (aborted) {

 break ;

 }

 more complex stuff

}

....

bit we get to if aborted becomes true

....

Note that we are using two variables as switches, they do not hold values as such; they

are actually used to represent states within the program as it runs. This is a standard

programming trick that you will find very useful.

You can break out of any of the three kinds of loop. In every case the program

continues running at the statement after the last statement of the loop.

Programmer’s Point:Be careful with your breaks

The break keyword smells a little like the dread goto, which programmers are often scared of. The

goto lets you jump from one part of the program to another. For this reason the goto is condemned

as a potentially dangerous and confusing device. The break statement lets you jump from any point

in a loop to the statement just outside the loop. This means that if my program is at the statement

immediately following the loop, there are a number of ways it could have got there; one for every

break in the loop above. This can make the code harder to understand. The break construction is

less confusing than the goto, but can still lead to problems. In this respect we advise you to

exercise caution when using it.

Writing a Program Loops

C# Programming © Rob Miles 2009 54

Going back to the top of a loop

Every now and then you will want to go back to the top of a loop and do it all again.

This happens when you have gone as far down the statements as you need to. C

provides the continue statement which says something along the lines of:

Please do not go any further down this time round the loop. Go back to the top of the

loop, do all the updating and stuff and go around if you are supposed to.

In the following program the bool variable Done_All_We_Need_This_Time is

set true when we have gone as far down the loop as we need to.

for (item = 1 ; item < Total_Items ; item=item+1) {

 item processing stuff

 if (Done_All_We_Need_This_Time) {

 continue ;

 additional item processing stuff

}

The continue causes the program to re-run the loop with the next value of item if it

is OK to do so. You can regard it as a move to step 2 in the list above.

More Complicated Decisions

We can now think about using a loop to test for a valid width or height. Essentially we

want to keep asking the user for a value until we get one which is OK; i.e. if you get a

value which is larger than the maximum or smaller than the minimum ask for another.

To do this we have to combine two tests to see if the value is OK. Our loop should

continue to run if:

width > MAX_WIDTH

or

width < MIN_WIDTH

To perform this test we use one of the logical operators described above to write a

condition which will be true if the width is invalid:

((width < MIN_WIDTH) || (width > MAX_WIDTH))

- note the profuse use of brackets. You must put these in.

Programmer’s Point:Get used to flipping conditions

One of the things that you will have to come to terms with is the way that you often have to

reverse the way you look at things. Rather than saying "Read me a valid number" you will have to say

"Read numbers while they are not valid". This means that you will often be checking to find the thing

that you don't want, rather than the thing that you do. Remember the notes about reversing

conditions above when you write the code.

Complete Glazing Program

This is a complete solution to the glazing problem. It uses all the tricks mentioned

above.

Writing a Program Operator Shorthand

C# Programming © Rob Miles 2009 55

Operator Shorthand

So far we have looked at operators which appear in expressions and work on two

operands, e.g.

window_count = window_count + 1

In this case the operator is + and is operating on the variable window_count and the

value 1. The purpose of the above statement is to add 1 to the variable

window_count. However, it is a rather long winded way of expressing this, both in

terms of what we have to type and what the computer will actually do when it runs the

program. C# allows us to be more terse if we wish, the line:

// Complete Double Glazing Program

// Rob Miles Oct. 2004

using System;

class GlazerCalc

{

 static void Main()

 {

 double width, height, woodLength, glassArea;

 const double MAX_WIDTH = 5.0 ;

 const double MIN_WIDTH = 0.5 ;

 const double MAX_HEIGHT = 3.0 ;

 const double MIN_HEIGHT = 0.75 ;

 string widthString, heightString;

 do {

 Console.Write ("Give the width of the window between " +

 MIN_WIDTH + " and " + MAX_WIDTH + " :");

 widthString = Console.ReadLine();

 width = double.Parse(widthString);

 } while ((width < MIN_WIDTH) || (width > MAX_WIDTH)) ;

 do {

 Console.Write ("Give the height of the window between " +

 MIN_HEIGHT + " and " + MAX_HEIGHT + " :");

 heightString = Console.ReadLine();

 height = double.Parse(heightString);

 } while ((height < MIN_HEIGHT) || (height > MAX_HEIGHT));

 woodLength = 2 * (width + height) * 3.25 ;

 glassArea = 2 * (width * height) ;

 Console.WriteLine ("The length of the wood is " +

 woodLength + " feet") ;

 Console.WriteLine("The area of the class is " +

 glassArea + " square metres") ;

 }

}

Writing a Program Operator Shorthand

C# Programming © Rob Miles 2009 56

window_count++

- would do the same thing. We can express ourselves more succinctly and the compiler

can generate more efficient code because it now knows that what we are doing is

adding one to a particular variable. The ++ is called a unary operator, because it works

on just one operand. It causes the value in that operand to be increased by one. There is

a corresponding -- operator which can be used to decrease (decrement) variables.

You can see examples of this construction in the for loop definition in the example

above.

The other shorthand which we use is when we add a particular value to a variable. We

could put :

house_cost = house_cost + window_cost

This is perfectly OK, but again is rather long winded. C# has some additional operators

which allow us to shorten this to:

house_cost += window_cost

The += operator combines addition and the assignment, so that the value in

house_cost is increased by window_cost. Some other shorthand operators are:

a += b the value in a is replaced a + b.

a -= b the value in a is replaced by a - b.

a /= b the value in a is replaced by a / b.

a *= b the value in a is replaced by a * b.

There are other combination operators; I will leave you to find them!

Statements and Values

One of the really funky things about C# is that all statements return a value, which you

can use in another statement if you like. Most of the time you will ignore this value,

which is OK, but sometimes it can be very useful, particularly when we get around to

deciding things (see later). In order to show how this is done, consider the following:

i = (j=0);

This is perfectly legal (and perhaps even sensible) C#. It has the effect of setting both i

and j to 0. An assignment statement always returns the value which is being assigned

(i.e. the bit on the right of the gozzinta). This value can then be used as a value or

operand. If you do this you are advised to put brackets around the statement which is

being used as a value, this makes the whole thing much clearer for both you and the

compiler!

When you consider operators like ++ there is possible ambiguity, in that you do not

know if you get the value before or after the increment. C# provides a way of getting

either value, depending on which effect you want. You determine whether you want to

see the value before or after the sum by the position of the ++ :

i++ Means give me the value before the increment.

++i means give me the value after the increment.

As an example:

int i = 2, j ;

j = ++i ;

- would make j equal to 3. The other special operators, += etc all return the value after

the operator has been performed.

Writing a Program Neater Printing

C# Programming © Rob Miles 2009 57

Programmer’s Point:Always strive for simplicity

Don't get carried away with this. The fact that you can produce code like:

 height = width = speed = count = size = 0 ;

- does not mean that you should. Nowadays when I am writing a program my first consideration is

whether or not the program is easy to understand. I don't think that the statement above is very

easy to follow – so irrespective of how much more efficient it is, I still don't do it.

Neater Printing

Note that the way that a

number is printed does not

affect how it is stored in the

program, it just tells the

printing method how it is

supposed to be printed.

If you have run any of the above programs you will by now have discovered that the

way in which numbers are printed leaves much to be desired. Integers seem to come

out OK, but floating point numbers seem to have a mind of their own. To get around

this C# provides a slightly different way in which numbers can be printed. This

provides more flexibility, and is also somewhat easier to use if you are printing a

large number of values.

Using Placeholders in Print Strings

A placeholder just marks the place where the value is to be printed. Consider:

int i = 150 ;

double f = 1234.56789 ;

Console.WriteLine ("i: {0} f: {1}", i, f) ;

Console.WriteLine ("i: {1} f: {0}", f, i) ;

This would print out:

i: 150 f: 1234.56789

i: 150 f: 1234.56789

The {n} part of the string says "parameter number n, counting from 0". In the second

write statement I have swapped the order of the numbers, but since I've swapped the

order of the parameters too the output is the same.

Of course if I do something mad, for example {99}, the WriteLine method will

fail with an error.

Adjusting real number precision

Placeholders can have formatting information added to them:

int i = 150 ;

double f = 1234.56789 ;

Console.WriteLine ("i: {0:0} f: {1:0.00}", i, f) ;

This would print out:

i: 150 f: 1234.57

The 0 characters stand for one or more digits. When placed after a decimal point they

can be used to control the number of decimal places which are used to express a value.

Note that doing this means that if the number is an integer it is printed out as 12.00.

Specifying the number of printed digits

I can specify a particular number of digits by putting in a given number of zeroes:

Writing a Program Neater Printing

C# Programming © Rob Miles 2009 58

int i = 150 ;

double f = 1234.56789 ;

Console.WriteLine ("i: {0:0000} f: {1:00000.00}", i, f);

This would print out:

i: 0150 f: 01234.57

Note that if I do this I get leading zeroes printed out, which is useful if you are printing

things like cheques.

Really Fancy Formatting

If you want really fancy levels of control you can use the # character. A # in the format

string means "put a digit here if you have one":

int i = 150 ;

double f = 1234.56789 ;

Console.WriteLine ("i: {0:#,##0} f: {1:##,##0.00}",i, f);

I have used the # character to get my thousands printed out with commas:

i: 150 f: 1,234.57

Note that the formatter only uses the # characters and commas that it needs. The value

150 does not have a thousands digit so it and the comma are left out. Note also though

that I have included a 0 as the smallest digit. This is so that when I print the value 0 I

actually get a value printed, otherwise when I print zero I get absolutely nothing on the

page.

Printing in columns

Finally I can add a width value to the print layout information. This is very useful if you

want to print material in columns:

int i = 150 ;

double f = 1234.56789 ;

Console.WriteLine ("i: {0,10:0} f: {1,15:0.00}", i, f) ;

Console.WriteLine ("i: {0,10:0} f: {1,15:0.00}", 0, 0) ;

This would produce the output:

i: 150 f: 1234.57

i: 0 f: 0.00

The integer value is printed in a column 10 characters wide, and the double is printed in

a 15 character wide column. At the moment the output is right justified, if I want the

numbers left justified I make the width negative:

int i = 150 ;

double f = 1234.56789 ;

Console.WriteLine ("i: {0,-10:0} f: {1,-15:0.00}",i, f) ;

Console.WriteLine ("i: {0,-10:0} f: {1,-15:0.00}",0, 0) ;

This would produce the output:

i: 150 f: 1234.57

i: 0 f: 0.00

Note that this justification would work even if you were printing a string rather than a

number, so if you want to print columns of words you can use this technique to do it.

There are other ways in which you can control the printing process, for example you

can select the number base for the value to be printed. I will leave you to find out these!

Note also that you can specify the print width of any item, even a piece of text, which

makes printing in columns very easy.

Methods Methods So Far

C# Programming © Rob Miles 2009 59

Methods

We have already come across the methods Main, WriteLine and ReadLine.

Main is the method we write which is where our program starts. WriteLine and

ReadLine were provided by the creators of C# to give us a way of displaying text and

reading information from the user.

This is what methods are all about. Your programs will contain methods that you create

to solve parts of the problem and they will also use methods that have been provided by

other people. In this section we are going to consider why methods are useful and how

you can create your own.

Methods So Far

In the glazing program above we spend a lot of time checking the values of inputs and

making sure that they are in certain ranges. We have exactly the same piece of code to

check widths and heights. If we added a third thing to read, for example frame

thickness, we would have to copy the code a third time. This is not very efficient; it

makes the program bigger and harder to write. What we would like to do is write the

checking code once and then use it at each point in the program. To do this you need to

define a method to do the work for you.

Method and Laziness

We have already established that a good programmer is creatively lazy. One of the

tenets of this is that a programmer will try to do a given job once and once only.

Up until now all our programs have been in a single method. The method is the block

of code which follows the main part in our program. However, C# lets us create other

methods which are used when our program runs. Methods give us two new weapons:

1. We can use methods to let us re-use a piece of code which we have written.

2. We can also use methods to break down a large task into a number of smaller

ones.

We will need both of these when we start to write larger programs. Again, as with lots

of features of the C# language, methods don't actually make things possible, but they do

help with the organisation of our programs.

Essentially you take a block of code and give it a name. Then you can refer to this

block of code to do something for you. As a silly example:

 using System ;

 class MethodDemo {

 static void doit () {

 Console.WriteLine ("Hello");

 }

 public static void Main () {

 doit();

 doit();

 }

 }

In the main method I make two calls of doit. Each time I call the method the code in

the block which is the body of the method is executed. In this case it contains a single

statement which prints "Hello" on the console. The result of running the above

program would be:

http://robsroldec.dcs.hull.ac.uk/wiki/index.php/Creatively_lazy

Methods Methods So Far

C# Programming © Rob Miles 2009 60

 Hello

 Hello

So, we can use methods to save us from writing the same code twice. We simply put the

code inside a method body and then call it when we need it.

Parameters

At this point methods are useful because they let us use the same block of statements at

many points in the program. However, they become more useful if we allow them to

have parameters.

A parameter is a means of passing a value into a method call. The method is given the

data to work on. As an example, consider the code below:

 using System ;

 class MethodDemo {

 static void silly (int i) {

 Console.WriteLine ("i is : " + i) ;

 }

 public static void Main () {

 silly (101) ;

 silly (500) ;

 }

 }

The method silly has a single integer parameter. Within the block of code which is

the body of this method we can use the parameter i as if it was an integer variable.

When the method starts the value supplied for the parameter is copied into it. This

means that when the program runs we get output like this:

 i is : 101

 i is : 500

Return values

A method can also return a value:

 using System ;

 class ReturnDemo {

 static int sillyReturnPlus (int i) {

 i = i + 1;

 Console.WriteLine ("i is : " + i) ;

 return i;

 }

 public static void Main () {

 int res;

 res = sillyReturnPlus (5);

 Console.WriteLine ("res is : " + res) ;

 }

 }

The method sillyReturnPlus takes the value of the parameter and returns it plus

one.

A Useful Method

If we put these two abilities together we can start to write genuinely useful methods:

Methods Methods So Far

C# Programming © Rob Miles 2009 61

 class MethodDemo {

 static double readValue (

 string prompt, // prompt for the user

 double low, // lowest allowed value

 double high // highest allowed value

) {

 double result = 0;

 do {

 Console.WriteLine (prompt +

 "between " + low +

 " and " + high);

 string resultString = Console.ReadLine ();

 result = double.Parse(resultString);

 } while ((result < low) || (result > high));

 return result ;

 }

 public static void Main () {

 double age = readValue (

 "Enter the age : ", 0, 100.0) ;

 Console.WriteLine ("Age is : " + age) ;

 }

 }

The readValue method is told the prompt to use and the lowest and the highest

allowed values. It can then be used to read values and make sure that they are in range.

We can use this method to read the ages of people as in the example above. However,

we can also use exactly the same method to read in the width and height of our

windows:

double windowWidth = readValue (

 "Enter width of window: ", MIN_WIDTH, MAX_WIDTH) ;

Programmer’s Point:Design with methods

Methods are a very useful part of the programmer's toolkit. They form an important part of the

development process. Once you have worked out what the customer wants and gathered your

metadata you can start thinking about how you are going to break the program down into methods.

Often you find that as you write the code you are repeating a particular action. If you do this you

should consider taking that action and moving it into a method. There are two reasons why this is a

good idea:

1. It saves you writing the same code twice.

2. If a fault is found in the code you only have to fix it in one place.

Moving code around and creating methods is called refactoring. This will be an important part of the

Software Engineering we do later.

Method Limitations

The method is very good for getting work done, but it is a bit limited because of the

way that it works. For example, if I want to write a method which reads in the name and

age of a person I have a problem. From what we have seen of methods, they can only

return one value. So I could write a method which returns the name of a person, or

write on which returns an age. But not both values at the same time. This limitation is

because, unless you specify otherwise, only the value of a parameter is passed into a

call to a method.

Methods Methods So Far

C# Programming © Rob Miles 2009 62

Parameter Passing By Value

So, what do I mean by "passing parameters by value". Consider:

static void addOneToParam (int i) {

 i = i + 1;

 Console.WriteLine ("i is : " + i) ;

}

The method addOneToParam adds one to the parameter, prints the result out and

then returns:

int test = 20 ;

addOneToParam(test);

Console.WriteLine ("test is : " + test) ;

The piece of C# above calls the method with the variable test as the parameter. When

it runs it prints out the following:

i is : 21

test is : 20

It is very important that you understand what is happening here. The value of test is

being used in the call of addOneToParam. The program works out the result of the

expression to be passed into the method call as a parameter. It then passes this value

into the call. This means that you can write calls like:

test = 20 ;

addOneToParam(test + 99);

This would print out:

i is : 120

Pass by value is very safe, because nothing the method does will affect variables in the

code which calls it. However, it is a limitation when we want to create a method which

returns more than one value.

Parameter Passing By Reference

It is very important that you

understand how references

work. If you don't understand

these you can't call yourself a

proper programmer!

Fortunately C# provides a way that, rather than sending the value of a variable into a

method, instead a reference to that variable is supplied instead. Inside the method,

rather than using the value of the variable the reference is used to get the actual

variable itself. Effectively the thing that is passed into the method is the position or

address of the variable in memory, rather than the content of the variable.

So, rather than passing in "20" in our above call the compiler will generate code which

passes in "memory location 5023" instead (assuming that the variable test is actually

stored at 5023). This memory location is used by the method, instead of the value. In

other words:

"If you pass by reference, changes to the parameter change the variable whose

reference you passed"

Consider the code:

static void addOneToRefParam (ref int i)

{

 i = i + 1;

 Console.WriteLine ("i is : " + i) ;

}

Note that the keyword ref has been added to the information about the parameter.

Methods Methods So Far

C# Programming © Rob Miles 2009 63

test = 20 ;

addOneToRefParam(ref test);

Console.WriteLine ("test is : " + test) ;

The code above makes a call to the new method, and also has the word ref in front of

the parameter. In this case the output is as follows:

i is : 21

test is : 21

In this case the method call has made changes to the content of the variable. Note that

C# is careful about when a parameter is a reference. You have to put the word ref in

the method heading and also in the call of the method.

Programmer’s Point:Document your side-effects

A change by a method to something around it is called a side effect of the method. Generally

speaking you have to be careful with these, as someone reading your program has to know that your

method has made changes in this way.

Passing Parameters as "out" references

When you pass a parameter as a reference you are giving the method complete control

of it. Sometimes you don't want this. Instead you want to just allow the method to

change the variable. This is the case when we want to read in the name and age of a

user. The original value of the parameters is of no interest to the method. Instead it just

wants to deliver results to them. In this case I can replace the ref with the keyword

out:

static void readPerson (out string name, out int age)

{

 name = readString ("Enter your name : ") ;

 age = readInt ("Enter your age : ", 0, 100) ;

}

The method readPerson reads the name and the age of a person. Note that it uses

two more methods that I have created, readString and readInt.

I can call readPerson as follows:

string name ;

int age ;

readPerson (out name, out age) ;

Note that I must use the out keyword in the call of the method as well.

The readPerson method will read the person and deliver the information into the

two variables.

Programmer’s Point:Languages can help programmers

The out keyword is a nice example of how the design of a programming language can make programs

safer and easier to write. It makes sure that a programmer can't use the value of the parameter in

the method. It also allows the compiler to make sure that somewhere in the method the output

parameters are assigned values. This is very useful. It means that if I mark the parameters as out I

must have given them a value for the program to compile. This makes it harder for me to get the

program wrong, as I am protected against forgetting to do that part of the job.

Methods Variables and Scope

C# Programming © Rob Miles 2009 64

Method Libraries

The first thing that a good programmer will do when they start writing code is to create

a set of libraries which can be used to make their job easier. In the code above I have

written a couple of library methods which I can use to read values of different types:

static string readString (string prompt)

{

 string result ;

 do

 {

 Console.Write (prompt) ;

 result = Console.ReadLine ();

 } while (result == "") ;

 return result ;

}

static int readInt (string prompt, int low, int high)

{

 int result ;

 do

 { string intString = readString (prompt) ;

 result = int.Parse(intString);

 } while ((result < low) || (result > high));

 return result;

}

The readString method will read text and make sure that the user does not enter

empty text. The readInt method reads a number within a particular range. Note how

I have rather cleverly used my readString method in my readInt one, so that the

user can't enter an empty string when a number is required.

Programmer’s Point:Always consider the failure behaviours

Whenever you write a method you should give some thought to the ways that it could fail. If the

method involves talking to the user it is possible that the user may wish to abandon the method, or

that the user does something that may cause it to fail. You need to consider whether or not the

method should deal with the problem itself or pass the error onto the system which tried to use it.

If the method deals with the error itself this may lead to problems because the user may have no

way of canceling a command. If the method passes the error on to the code which called it you have

to have a method by which an error condition can be delivered to the caller. I often solve this

problem by having my methods return a code value. If the return value is 0 this means that the

method returned correctly. If the return value is non-zero this means that the method did not work

and the value being returned is an error which identifies what went wrong. This adds another

dimension to program design, in that you also have to consider how the code that you write can fail,

as well as making sure that it does the required job! We are going to discuss error management

later

Variables and Scope

We have seen that when we want to store a quantity in our program we can create a

variable to hold this information. The C# compiler makes sure that the correctly sized

chunk of memory is used to hold the value and it also makes sure that we only ever use

that value correctly. The C# compiler also looks after the part of a program within

which a variable has an existence. This is called the scope of a variable.

Methods Variables and Scope

C# Programming © Rob Miles 2009 65

Scope and blocks

We have already seen that a block is a number of statements which are enclosed in

curly brackets. Any block can contain any number of local variables, i.e. variables

which are local to that block.

The scope of a local variable is the block within which the variable is declared. As far

as the C# language is concerned you can declare a variable at any point in the block,

but you must declare it before you use it. When the execution of the program moves

outside a block any local variables which are declared in the block are automatically

discarded. The methods that we have created have often contained local variables; the

variable result in the readInt method is local to the method block.

Nested Blocks

We have seen that in C# the programmer can create blocks inside blocks. Each of these

nested blocks can have its own set of local variables:

{

 int i ;

 {

 int j ;

 }

}

The variable j has the scope of the inner block. This means that only statements in the

inner block which are after the declaration can use this variable. In other words the

code:

{

 int i ;

 {

 int j ;

 }

 j = 99 ;

}

- would cause an error, as the variable j does not exist at this point in the program.

In order to keep you from confusing yourself by creating two versions of a variable

with the same name C# has an additional rule about the variables in the inner blocks:

{

 int i ;

 {

 int i ;

 }

}

This is not a valid program because C# does not let a variable in an inner block have

the same name as one in an outer block. This is because inside the inner block there is

the possibility that you may use the "inner" version of i when you intend to use the

outer one. In order to remove this possibility the compiler refuses to allow this. Note

that this is in contrast to the situation in other languages, for example C++, where this

behaviour is allowed.

If is however perfectly acceptable to reuse a variable name in successive blocks

because in this situation there is no way that one variable can be confused with another.

Arrays Why We Need Arrays

C# Programming © Rob Miles 2009 66

{

 int i ;

}

{

 int i ;

 {

 int j ;

 }

}

The first incarnation of i has been destroyed before the second, so this code is OK.

For loop local variables

A special kind of variable can be used when you create a for loop construction. This

allows you to declare a control variable which exists for the duration of the loop itself:

for (int i = 0 ; i < 10 ; i = i + 1) {

 Console.WriteLine ("Hello") ;

}

The variable i is declared and initialized at the start of the for loop and only exists for

the duration of the block itself.

Programmer’s Point:Plan your variable use

You should plan your use of variables in your programs. You should decide which variables are only

required for use in local blocks and which should be shared over the entire class.

Arrays

We now know how to create programs that can read values in, calculate results and

print them. Our programs can also make decisions based on the values supplied by the

user and also repeat actions a given number of times.

It turns out that you now know about nearly all the language features that are required

to implement every program that has ever been written. Only one thing is missing, and

that is the ability to create programs which store large amounts of data. Arrays are one

way to do this, and we are going to find out about them next.

Why We Need Arrays

Your fame as a programmer is now beginning to spread far and wide. The next person

to come and see you is the chap in charge of the local cricket team. He would like to

you write a program for him which allows the analysis of cricket results. What he wants

is quite simple; given a list of cricket scores he wants a list of them in ascending order.

"This is easy" you think. Having agreed the specification and the price you sit down

that night and start writing the program. The first thing to do is define how the data is to

be stored:

int score1, score2, score3, score4, score5, score6, score7

 score8, score9, score10, score11 ;

Now you can start putting the data into each variable:

Arrays Why We Need Arrays

C# Programming © Rob Miles 2009 67

Console.WriteLine("Enter the scores ");

string score1String = Console.ReadLine();

int score1 = int.Parse(score1String);

string score2String = Console.ReadLine();

int score2 = int.Parse(score2String);

string score3String = Console.ReadLine();

int score3 = int.Parse(score3String);

string score4String = Console.ReadLine();

int score4 = int.Parse(score4String);

string score5String = Console.ReadLine();

int score5 = int.Parse(score5String);

string score6String = Console.ReadLine();

int score6 = int.Parse(score6String);

string score7String = Console.ReadLine();

int score7 = int.Parse(score7String);

string score8String = Console.ReadLine();

int score8 = int.Parse(score8String);

string score9String = Console.ReadLine();

int score9 = int.Parse(score9String);

string score10String = Console.ReadLine();

int score10 = int.Parse(score10String);

string score11String = Console.ReadLine();

int score11 = int.Parse(score11String);

All we have to do next is sort them..... Hmmmm..... This is awful! There seems to be no

way of doing it. Just deciding whether score1 is the largest value would take an if

construction with 10 comparisons! Clearly there has to be a better way of doing this,

after all, we know that computers are very good at sorting this kind of thing.

C# provides us with a thing called an array. An array allows us to declare a whole row

of a particular kind of box. We can then use things called subscripts to indicate which

box in the row that we want to use. Consider the following:

using System;

 class ArrayDemo {

 public static void Main ()

 {

 int [] scores = new int [11] ;

 for (int i=0; i<11; i=i+1) {

 string scoreString = Console.ReadLine();

 scores [i] = int.Parse(scoreString);

 }

 }

 }

The int [] scores part tells the compiler that we want to create an array variable.

You can think of this as a tag which can be made to refer to a given array.

The bit which makes the array itself is the new int [11]. When C# sees this it says

"aha! What we need here is an array". It then gets some pieces of wood and makes a

long thin box with 11 compartments in it, each large enough to hold a single integer. It

then paints the whole box red - because boxes which can hold integers are red. It then

gets a piece of rope and ties the tag scores to this box. If you follow the rope from the

scores tag you reach the array box. Actually, it probably doesn't use wood or rope, but

you should get a picture of what is going on here.

Array Elements

Each compartment in the box is called an element. In the program you identify which

element you mean by putting its number in square brackets [] after the array name.

This part is called the subscript. Note that the thing which makes arrays so wonderful is

the fact that you can specify an element by using a variable, as well as a constant. In

fact you can use any expression which returns an integer result as a subscript, i.e.

Arrays Why We Need Arrays

C# Programming © Rob Miles 2009 68

 scores [i+1]

- is quite OK. (as long as you don't fall off the end of the array)

Array Element Numbering

C# numbers the boxes starting at 0. This means that you specify the first element of the

array by giving the subscript 0. There is consequently no element scores [11]. If

you look at the part of the program which reads the values into the array you will see

that we only count from 0 to 10. This is very important. An attempt to go outside the

array bounds of scores cause your program to fail as it runs.

Large Arrays

The real power of arrays comes from our being able to use a variable to specify the

required element. By running the variable through a range of values we can then scan

through an array with a very small program; indeed to change the program to read in

1000 scores we only have to make a couple of changes:

 using System;

 class ArrayDemo {

 public static void Main ()

 {

 int [] scores = new int [1000] ;

 for (int i=0; i<1000; i=i+1) {

 string scoreString = Console.ReadLine();

 scores [i] = int.Parse(scoreString);

 }

 }

 }

The variable i now ranges from 0 to 999, vastly increasing the amount of data we are

storing.

Managing Array Sizes

A good trick when working with arrays is to make use of constant variables to hold the

size of the array. This has two significant benefits:

 It makes the program easier to understand

 It makes the program easier to change

A constant variable is given a value when it is declared. This value can then only be

read by the program, never updated. So, if I wanted to write a scores program that

could be easily changed for any size of team I could write:

using System;

 class ArrayDemo {

 public static void Main ()

 {

 const int SCORE_SIZE = 1000;

 int [] scores = new int [SCORE_SIZE] ;

 for (int i=0; i < SCORE_SIZE; i=i+1) {

 string scoreString = Console.ReadLine();

 scores [i] = int.Parse(scoreString);

 }

 }

 }

The variable SCORE_SIZE is an integer which has been marked with const. This

means that it cannot be changed by statements within the program. It will never have a

value other than 1000. There is a convention that constants of this kind are given in

LARGE LETTERS with an underscore between words.

Arrays Why We Need Arrays

C# Programming © Rob Miles 2009 69

Everywhere I previously used a fixed value to represent the size of the array I now use

my constant instead. This means that if the size of the team changes I just have to

change the value assigned when the constant is declared and then re-compile the

program. The other benefit of this is that the for loop now looks a lot more

meaningful. Since the value of i is now going from 0 to SCORE_SIZE it is more

obvious to the reader that it is working through the score array.

Creating a Two Dimensional Array

However, sometimes we want to hold more than just a row. Sometimes we want a grid.

We can do this by creating a two dimensional array. You can think of this as an "array

of arrays" if you like (but only if this doesn't make your head hurt). For example, to

hold the board for a game of noughts and crosses we could use:

int [,] board = new int [3,3];

board [1,1] = 1;

This looks very like our one dimensional array, but there are some important

differences. The [,] now has a comma. The presence of a comma implies something

each side of it. This means that the array now has two dimensions, rather than just one.

So when we give the size of the board we must supply two dimensions rather than just

one. Then, when we want to specify an element we have to give two subscript values. In

the code above I've set the value in the middle square (the best one) to 1.

In the example above the array is square (i.e. the same dimension across as up). We can

change this if we like:

 int [,] board = new int [3,10];

- but this would make it rather hard to play a sensible game on...

You can think of a two dimensional array as a grid if you like. The subscripts become x

and y values which indicate a particular value in the grid.

More than Two Dimensions

Once in a blue moon you may need to use more than two dimensions. If you go to three

dimensions you can think in terms of a pile of grids if you like, with the third dimension

(which you could call z) giving you the particular grid. If we wanted to play three

dimensional noughts and crosses in a board which is a cube we can declare the array to

do it as follows:

int [,,] board = new int [3,3,3];

board [1,1,1] = 1;

This code creates a three dimensional board and then gets the highly valuable location

right in the middle of the game cube.

You can go to more than three dimensions if you like, in that C# does not have a

problem with this. However, you might have big problems because this is very hard to

understand and visualise.

Programmer’s Point:Keep your dimensions low

In all my years of programming I've never had to use anything more than three dimensions. If you

find yourself having lots of dimensions I would suggest that you are trying to do things the wrong

way and should step back from the problem. It may be that you can get a much more efficient

solution by creating a struct and then making an array of the structure items. We will talk about

structures later.

Switching Making Multiple Decisions

C# Programming © Rob Miles 2009 70

Switching

We now know nearly everything you need to know about constructing a program in the

C# language. You may find it rather surprising, but there is really very little left to

know about programming itself. Most of the rest of C is concerned with making the

business of programming simpler. A good example of this is the switch construction.

Making Multiple Decisions

Suppose you are refining your double glazing program to allow your customer to select

from a pre-defined range of windows. You ask something like

Enter the type of window:

1 = casement

2 = standard

3 = patio door

Your program can then calculate the cost of the appropriate window by selecting type

and giving the size. Each method asks the relevant questions and works out the price of

that kind of item.

When you come to write the program you will probably end up with

something like:

static void handleCasement ()

{

 Console.WriteLine("Handle Casement");

}

static void handleStandard ()

{

 Console.WriteLine("Handle Standard");

}

static void handlePatio ()

{

 Console.WriteLine("Handle patio");

}

These methods are the ones which will eventually deal with each type of window. At

the moment they just print out that they have been called. Later you will go on and fill

the code in (this is actually quite a good way to construct your programs).

Selecting using the if construction

When you come to perform the actual selection you end up with code which looks a bit

like this:

int selection ;

selection = readInt ("Window Type : ", 1, 3) ;

if (selection == 1)

{

 handleCasement();

}

else

{

 if (selection == 2)

 {

 handleStandard();

 }

Switching Making Multiple Decisions

C# Programming © Rob Miles 2009 71

 else

 {

 if (selection == 3)

 {

 handlePatio() ;

 }

 else

 {

 Console.WriteLine ("Invalid number");

 }

 }

}

This would work OK, but is rather clumsy. You have to write a large number of if

constructions to activate each option.

The switch construction

Because you have to do this a lot C# contains a special construction to allow you to

select one option from a number of them based on a particular value. This is called the

switch construction. If you write the above using it your program would look like this.

switch (selection)

{

 case 1 : handleCasement ();

 break ;

 case 2 : handleStandard () ;

 break ;

 case 3 : handlePatio () ;

 break ;

 default :

 Console.WriteLine ("Invalid number") ;

 break ;

}

The switch construction takes a value which it uses to decide which option to

perform. It executes the case which matches the value of the switch variable. Of

course this means that the type of the cases that you use must match the switch selection

value although, in true C# tradition, the compiler will give you an error if you make a

mistake. The break statement after the call of the relevant method is to stop the

program running on and performing the code which follows. In the same way as you

break out of a loop, when the break is reached the switch is finished and the

program continues running at the statement after the switch.

Another other useful feature is the default option. This gives the switch somewhere

to go if the switch value doesn't match any of the cases available; in our case (sorry!)

we put out an appropriate message.

You can use the switch construction with types other than numbers if you wish:

switch (command)

{

 case "casement" : handleCasement ();

 break ;

 case "standard" : handleStandard () ;

 break ;

 case "patio" : handlePatio () ;

 break ;

 default :

 Console.WriteLine ("Invalid command") ;

 break ;

}

This switch uses a string to control the selection of the cases. However, your users

would not thank you for doing this, since it means that they have to type in the complete

Our Case Study: Friendly Bank Bank System Scope

C# Programming © Rob Miles 2009 72

name of the option, and of course if they type a character wrong the command is not

recognised.

Programmer’s Point:switches are a good idea

Switches make a program easier to understand as well as quicker to write. It is also easier to add

extra commands if you use a switch since it are just a matter of putting in another case. However,

I'd advise against putting large amounts of program code into a switch case. Instead you should put

a call to a method as I have above.

Our Case Study: Friendly Bank

The bulk of the text is based on a case study which will allow you to see the features of

C# in a strong context. You are taking the role of a programmer who will be using the

language to create a solution for a customer.

The program we are making is for a bank, the "United Friendly and Really Nice Bank

of Lovely People ™", otherwise known as the Friendly Bank. We will be creating the

entire bank application using C# and will be exploring the features of C# that make this

easy.

Bank System Scope

The scope of a system is a description of the things that the system is going to do. This

is also, by implication, a statement of what the system will not do. This equally as

important, as a customer will not usually have clear idea of what you are doing and may

well expect you to deliver things that you have no intention of providing. By setting out

the scope at the beginning you can make sure that there are no unpleasant surprises later

on.

At the moment we are simply concerned with managing the account information in the

bank. The bank manager has told us that customers of the bank each have an account

which holds their name, address, account number, balance and overdraft value. There

are many thousands of customers and the manager has also told us that there are also a

number of different types of accounts (and that new types of account are invented from

time to time). The system must also generate warning letters and statements as required.

The scope does not include to telephone or web based banking, yet.

Bank Notes

At the end of some sections there will be a description of how this new piece of C# will

affect how we create our bank system. These notes should put the feature into a useful

context.

Enumerated Types

These sound really posh. If anyone asks you what you learnt today you can say "I learnt

how to use enumerated types" and they will be really impressed. Of course if they know

Enumerated Types Enumeration and states

C# Programming © Rob Miles 2009 73

about programming they'll just say "Oh, you mean you’ve numbered some states" and

not be that taken with it.

Enumeration and states

Enumerated sounds posh. But if you think of "enumerated" as just meaning "numbered"

things get a bit easier. To understand what we are doing here we need to consider the

problem which these types are intended to solve.

We know that if we want to hold an integer value we can use an int type. If we want

to hold something which is either true or false we can use a bool. However, sometimes

we want to hold a range of particular values or states.

Sample states

Enumerated types are very useful when storing state information. States are not quite

the same as other items such as the name of a customer or the balance of their account.

For example, if I am writing a program to play the game Battleships (where squares of

the "sea" hold different types of craft which can be attacked) I may decide that a given

square of the sea can have the following thing in it:

 Empty sea

 Attacked

 Battleship

 Cruiser

 Submarine

 Rowing boat

If you think about it, I am sort of assembling more metadata here, in that I have decided

that I need to keep track of the sea and then I have worked out exactly what I can put in

it. I could do something with numbers if I like:

 Empty sea = 1

 Attacked = 2

 Battleship = 3

 Cruiser = 4

 Submarine = 5

 Rowing boat = 6

However, this would mean that I have to keep track of the values myself and remember

that if we get the value 7 in a sea location this is clearly wrong.

C# has a way in which we can create a type which has just a particular set of possible

values. These types are called "enumerated types":

 enum SeaState {

 EmptySea,

 Attacked,

 Battleship,

 Cruiser,

 Submarine,

 RowingBoat

 } ;

I have created a type called SeaState which can be used to hold the state of a

particular part of the sea. It can only have the given values above, and must be managed

solely in terms of these named enumerations. For example I must write:

Enumerated Types Creating an enum type

C# Programming © Rob Miles 2009 74

 SeaState openSea ;

 openSea = SeaState.EmptySea;

My variable openSea is only able to hold values which represent the state of the sea

contents. Of course C# itself will actually represent these states as particular numeric

values, but how these are managed is not a problem for me.

Creating an enum type

The enum type must be created outside any program block and is held within the

enclosing class:

using System;

class EnumDemonstration {

 enum TrafficLight {

 Red,

 RedAmber,

 Green,

 Amber

 } ;

 public static void Main () {

 TrafficLight light ;

 light = TrafficLight.Red;

 }

}

Every time that you have to hold something which can take a limited number of

possible values, or states (for example OnSale, UnderOffer, Sold,

OffTheMarket etc) then you should think in terms of using enumerated types to hold

the values.

Programmer’s Point:Use enumerated types

Enumerated types are another occasion where everyone benefits if you use them. The program

becomes simpler to write, easier to understand and safer. You should therefore use them

For the bank you want to hold the state of an item as well as other information about the

customer. For example, we could have the states "Frozen", "New", "Active", "Closed"

and "Under Audit" as states for our bank account. If this is the case it is sensible to

create an enumerated type which can hold these values and no others

enum accountState {

 New,

 Active,

 UnderAudit,

 Frozen,

 Closed

} ;

We now have a variable which can hold state information about an account in our bank.

Structures What is a Structure?

C# Programming © Rob Miles 2009 75

Structures

Structures let us organise a set of individual values into a cohesive lump which we can

map onto one of the items in the problem that we are working on. This is important in

many applications.

What is a Structure?

Often when you are dealing with information you will want to hold a collection of

different things about a particular item. The Friendly Bank has commissioned an

account storage system and you can use structures to make this easier. Like any good

programmer who has been on my course you would start by doing the following:

1. Establish precisely the specification, i.e. get in written form exactly what

they expect your system to do.

2. Negotiate an extortionate fee.

3. Consider how you will go about storing the data.

A sample structure

From your specification you know that the program must hold the following:

 customer name - string

 customer address - string

 account number - integer value

 account balance - integer value

 overdraft limit - integer value

The Friendly Bank have told you that they will only be putting up to 50 people into

your bank storage so, after a while you come up with the following:

const int MAX_CUST = 50;

string [] names = new string [MAX_CUST] ;

string [] addresses = new string [MAX_CUST] ;

int [] accountNos = new int [MAX_CUST] ;

int [] balances = new int [MAX_CUST] ;

int [] overdraft = new int [MAX_CUST] ;

What we have is an array for each single piece of data we want to store about a

particular customer. If we were talking about a database (which is actually what we are

writing), the lump of data for each customer would be called a record and an individual

part of that lump, for example the overdraft value, would be called a field. In our

program we are working on the basis that balance[0] holds the balance of the first

customer in our database, overdraft [0] holds the overdraft of the first customer,

and so on. (Remember that array subscript values start at 0).

This is all very well, and you could get a database system working with this data

structure. However it would me much nicer to be able to lump your record together in a

more definite way.

Structures Creating a Structure

C# Programming © Rob Miles 2009 76

Creating a Structure

C# lets you create data structures. A structure is a collection of C# variables which you

want to treat as a single entity. In C# a lump of data would be called a structure and

each part of it would be called a field. To help us with our bank database we could

create a structure which could hold all the information about a customer:

struct Account

{

 public string Name ;

 public string Address ;

 public int AccountNumber ;

 public int Balance ;

 public int Overdraft ;

} ;

This defines a structure, called Account, which contains all the required customer

information. Having done this we can now define some variables:

Account RobsAccount ;

Account [] Bank = new Account [MAX_CUST];

The first declaration sets up a variable called RobsAccount, which can hold the

information for a single customer. The second declaration sets up an entire array of

customers, called Bank which can hold all the customers.

We refer to individual members of a structure by putting their name after the struct

variable we are using with a . (full stop) separating them, for example:

RobsAccount.AccountNumber

- would refer to the integer field AccountNumber in the structured variable

RobsAccount. (i.e. the AccountNumber value in RobsAccount)

You can do this with elements of an array of structures too, so that:

Bank [25].Name

- would be the string containing the name of the customer in the element with subscript

25.

Using a Structure

A program which creates and sets up a structure looks like this:

Structures Using a Structure

C# Programming © Rob Miles 2009 77

Note how the structure is declared outside the Main method. This is so that it can be

used by any methods in the class. Note also that once I have created my structure I can

use it in the same way that I would use something like int or float.

This program doesn’t create an array of structures, but it does show you how to access

the various fields in a single structure variable.

Initial values in structures

When a structure is created as a local variable (i.e. in a block) the values in it are

undefined. This means that if you try to use them in your program you will get a

compilation error. This is exactly the same as if you use a variable in a program before

giving it a value. In other words:

Account RobsAccount ;

Console.WriteLine ("Name is : " + RobsAccount.Name) ;

- would produce a compilation error. It is your job as programmer to make sure that

you always put a value into a variable before you try to get something out of it.

Programmer’s Point:Structures are crucial

In a commercial system it is common to spend a very long time designing the structures which make

up the data storage. They are the fundamental building blocks of the program since they hold all

the data upon which everything else is built. You can regard the design of the structures and the

constraints on their content as another big chunk of metadata about a system that you create.

Enumerated Types in Structures

Since any given account instance will have a particular state it makes sense to add a

state value to each one:

using System;

class BankProgram {

 // structure

 struct Account

 {

 public string Name ;

 public string Address ;

 public int AccountNumber ;

 public int Balance ;

 public int Overdraft ;

 } ;

 // program

 public static void Main () {

 Account RobsAccount ;

 RobsAccount.Name = "Rob Miles";

 RobsAccount.Address = "His house";

 RobsAccount.AccountNumber = 1234;

 RobsAccount.Balance = 0;

 RobsAccount.Overdraft = -1000;

 Console.WriteLine ("Name is : " + RobsAccount.Name) ;

 Console.WriteLine ("Balance is : " + RobsAccount.Balance) ;

 }

}

Objects, Structures and References Using a Structure

C# Programming © Rob Miles 2009 78

enum accountState {

 New,

 Active

 UnderAudit,

 Frozen,

 Closed

} ;

struct Account

{

 public accountState state ;

 public string Name ;

 public string Address ;

 public int AccountNumber ;

 public int Balance ;

 public int Overdraft ;

} ;

Objects, Structures and

References

You have seen that if you want to store a block of information about a particular item

you can bring all this together in a structure. Structures are useful, but we would like to

be able to solve other problems when we write large programs:

 We want to make sure that a given item in our program cannot be placed into

an invalid state, i.e. we don’t want to have bank accounts with empty or

incorrect account numbers.

 We want to be able to break a large system down into distinct and separate

components which can be developed independently and interchanged with

others which do the same task, i.e. we want to get one team of programmers

working on accounts, another on cheques, another on credit cards etc.

 We want to make sure that the effort involved with making new types of bank

account is as small as possible, i.e. if the bank decides to introduce a new high

interest deposit account we want to be able to make use of existing deposit

account

To do all these things we are going to have to start to consider programs from the point

of view of object based design. This section should come with some kind of a health

warning along the lines of "some of these ideas might hurt your head a bit at the start".

But the following points are also very important:

 objects don’t add any new behaviours to our programs – we know just about

everything we need to know to write programs when we have learnt about

statements, loops, conditions and arrays.

 objects are best regarded as a solution to the problem of design. They let us

talk about systems in general terms. We can go back and refine how the

objects actually do their tasks later.

You can write just about every program that has ever been written just by using the

technologies that we have so far looked at. But objects allow us to work in a much nicer

way. And so we are going to have to get the hang of them, like it or not…

Objects, Structures and References Objects and Structures

C# Programming © Rob Miles 2009 79

Objects and Structures

In C# objects and structures have a lot in common. They can both hold data and contain

methods. However, there is a crucial difference between the two. Structures are

managed in terms of value whereas objects are managed in terms of reference.

It is very important that you understand the distinction between the two, for it has a big

impact on the way that they are used.

Creating and Using a Structure

Consider the code:

class StructsAndObjects {

 struct AccountStruct

 {

 public string Name ;

 } ;

 public static void Main () {

 AccountStruct RobsAccountStruct ;

 RobsAccountStruct.Name = "Rob";

 Console.WriteLine (RobsAccountStruct.Name); }

}

This implements a very simple bank account, where we are only holding the name of

the account holder. The Main method creates a structure variable called

RobsAccountStruct.

It then sets the name property of the variable to the string "Rob". If we run this program

it does exactly what you would expect, in that it prints out the name "Rob". If the

structure contained other items about the bank account these would be stored in the

structure as well, and I could use them in just the same way.

Creating and Using an Instance of a Class

We can make a tiny change to the program and convert the bank account to a class:

class StructsAndObjects {

 class Account

 {

 public string Name ;

 } ;

 public static void Main () {

 Account RobsAccount ;

 RobsAccount.Name = "Rob";

 Console.WriteLine (RobsAccount.Name); }

}

The account information is now being held in a class, rather than a structure. The

account class is called, quite simply, Acount. The problem is that when we compile

the program we get this:

RobsAccountStruct

Name: Rob

Objects, Structures and References Objects and Structures

C# Programming © Rob Miles 2009 80

ObjectDemo.cs(12,3): error CS0165: Use of unassigned local

variable ' RobsAccount'

So, what is going on?

To understand what is happening you need to know what is performed by the line:

Account RobsAccount;

This looks like a declaration of a variable called RobsAccount. But in the case of

objects, this is not what it seems.

What you actually get when the program obeys that line is the creation of a reference

called RobsAccount. Such references are allowed to refer to instances of the

Account. You can think of them as a bit like a luggage tag, in that they can be tied to

something with a piece of rope. If you have the tag you can then follow the rope to the

object it is tied to.

 But when we create a reference we don't actually get one of the things that it refers to.

The compiler knows this, and so it gives me an error because the line:

RobsAccount.Name = "Rob";

- is an attempt to find the thing that is tied to this tag and set the name property to

"Rob". Since the tag is presently not tied to anything our program would fail at this

point. The compiler therefore says, in effect, "you are trying to follow a reference

which does not refer to anything, therefore I am going to give you a 'variable undefined'

error".

We solve the problem by creating an instance of the class and then connecting our tag

to it. This is achieved by adding a line to our program:

class StructsAndObjects {

 class Account

 {

 public string Name ;

 } ;

 public static void Main () {

 Account RobsAccount ;

 RobsAccount = new Account();

 RobsAccount.Name = "Rob";

 Console.WriteLine (RobsAccount.Name); }

}

The line I have added creates a new AccountClass object and sets RobsAccount

to refer to it.

We have seen this keyword new before. We use it to create arrays. This is because an

array is actually implemented as an object, and so we use new to create it. The thing

that new creates is an object. An object is an instance of a class. I'll repeat that in a posh

font:

RobsAccount

Account

Name:

RobsAccount

Objects, Structures and References References

C# Programming © Rob Miles 2009 81

“An object is an instance of a class”
I have repeated this because it is very important that you understand this. A class

provides the instructions to C# as to what is to be made, and what it can do. The new

keyword causes C# to use the class information to actually make an instance. Note that

in the above diagram I have called the object an Account, not RobsAccount. This

is because the object instance does not have the identifier RobsAccount, it is simply

the one which RobsAccount is connnected to at the moment.

References

We now have to get used to the idea that if we want to use objects, we have to use

references. The two come hand in hand and are inseparable. Structures are kind of

useful, but for real object oriented satisfaction you have to have an object, and that

means that we must manage our access to a particular object by making use of

references to it. Actually this is not that painful in reality, in that you can treat a

reference as if it really was the object just about all of the time, but you must remember

that when you hold a reference you do not hold an instance, you hold a tag which is tied

onto an instance…

Multiple References to an Instance

Perhaps another example of references would help at this point. Consider the following

code:

Account RobsAccount ;

RobsAccount = new Account();

RobsAccount.Name = "Rob";

Console.WriteLine (RobsAccount.Name);

Account Temp ;

Temp = RobsAccount;

Temp.Name = "Jim";

Console.WriteLine (RobsAccount.Name);

The question is; what would the second call of WriteLine print out? If we draw a

diagram the answer becomes clearer:

Both of the tags refer to the same instance of Account. This means that any changes

which are made to the object that Temp refers to will also be reflected in the one that

RobsAccount refers to, because they are the same object. This means that the

program would print out Jim, since that is the name in the object that RobsAccount

is referring to.

RobsAccount

Account

Name: Jim

Temp

Objects, Structures and References References

C# Programming © Rob Miles 2009 82

This indicates a trickiness with objects and references. There is no limit to the number

of references that can be attached to a single instance, so you need to remember that

changing the object that a reference refers to may well change that instance from the

point of view of other objects.

No References to an Instance

Just to complete the confusion we need to consider what happens if an object has no

references to it:

Account RobsAccount ;

RobsAccount = new Account();

RobsAccount.Name = "Rob";

Console.WriteLine (RobsAccount.Name);

RobsAccount = new Account();

RobsAccount.Name = "Jim";

Console.WriteLine (RobsAccount.Name);

This code makes an account instance, sets the name property of it to Rob and then

makes another account instance. The reference RobsAccount is made to refer to the

new item, which has the name set to Jim. The question is: What happens to the first

instance? Again, this can be made clearer with a diagram:

The first instance is shown “hanging” in space, with nothing referring to it. As far as

making use of data in the instance is concerned, it might as well not be there. Indeed the

C# language implementation has a special process, called the “Garbage Collector”

which is given the job of finding such useless items and disposing of them. Note that

the compiler will not stop us from “letting go” of items like this.

You should also remember that you can get a similar effect when a reference to an

instance goes out of scope:

{

 Account localVar ;

 localVar = new Account();

}

The variable localVar is local to the block. This means that when the program

execution leaves the block the local variable is discarded. This means that the only

reference to the account is also removed, meaning another job for the garbage

collector..

RobsAccount

Account

Name: Rob

Account

Name: Jim

Objects, Structures and References Why Bother with References?

C# Programming © Rob Miles 2009 83

Programmer’s Point:Try to avoid the Garbage Collector

While it is sometimes reasonable to release items you have no further use for, you must remember

that creating and disposing of objects will take up computing power. When I work with objects I

worry about how much creating and destroying I am doing. Just because the objects are disposed of

automatically doesn’t mean that you should abuse the facility.

Why Bother with References?

References don’t sound much fun at the moment. They seem to make it harder to create

and use objects and may be the source of much confusion. So why do we bother with

them?

To answer this we can consider the Pacific Island of Yap. The currency in use on this

island is based around 12 feet tall stones which weigh several hundred pounds each.

The value of a “coin” in the Yap currency is directly related to the number of men who

died in the boat bringing the rock to the island. When you pay someone with one of

these coins you don’t actually pick it up and give it to them. Instead you just say “The

coin in the road on top of the hill is now yours”. In other words they use references to

manage objects that they don’t want to have to move around.

That is why we use references in our programs. Consider a bank which contains many

accounts. If we wanted to sort them into alphabetical order of customer name we have

to move them all around.

Sorting by moving objects around

If we held the accounts as an array of structure items we would have to do a lot of work

just to keep the list in order. The bank may well want to order the information in more

than one way too, for example they might want to order it on both customer surname

and also on account number. Without references this would be impossible. With

references we just need to keep a number of arrays of references, each of which is

ordered in a particular way:

Sorting by using references.

Objects, Structures and References Why Bother with References?

C# Programming © Rob Miles 2009 84

If we just sort the references we don’t have to move the large data items at all. New

objects can be added without having to move any objects, instead the references can be

moved around.

References and Data Structures

Our list of sorted references is all very good, but if we want to add something to our

sorted list we still have to move the references around. We can get over this, and also

speed up searching, by structuring our data into a tree form.

Sorting by use of a tree.

In the tree above each node has two references; one can refer to a node which is

“lighter”, the other to a node which is “darker”. If I want a sorted list of the items I just

have to go as far down the “lighter” side as I can and I will end up at the lightest. Then

I go up to the one above that (which must be the next lightest). Then I go down the dark

side (Luke) and repeat the process. The neat thing about this approach is also that

adding new items is very easy; I just find the place on the tree that they need to be hung

on and attach the reference there.

Searching is also very quick, in that I can look at each node and decide which way to

look next until I either find what I am looking for or I find there is no reference in the

required direction, in which case the item is not in the structure.

Programmer’s Point:Data Structures are Important

This is not a data structures document, it is a programming document. If you don’t get all the stuff

about trees just yet, don’t worry. Just remember that references are an important mechanism for

building up structures of data and leave it at that. But some time in the future you are going to have

to get your head around how to build structures using these things.

Reference Importance

The key to this way of working is that an object can contain references to other objects,

as well as the data payload. We will consider this aspect of object use later; for now we

just need to remember that the reference and the object are distinct and separate.

Bank Notes: References and Accounts

For a bank with many thousands of customers the use of references is crucial to the

management of the data that they hold. The accounts will be held in the memory of the

computer and, because of the size of each account and the number of accounts being

stored, it will not be possible to move them around memory if we want to sort them.

Designing With Objects Why Bother with References?

C# Programming © Rob Miles 2009 85

This means that the only way to manipulate them is to leave them in the same place and

have lists of references to them. The references are very small "tags" which can be used

to locate the actual item in memory. Sorting a list of references is very easy, and it

would also be possible to have several such lists. This means that we can offer the

manager a view of his bank sorted by customer name and another view sorted in order

of balance. And if the manager comes along with a need for a new structure or view we

can create that in terms of references as well.

Designing With Objects

We are now going to start thinking in terms of objects. The reason that we do this is

that we would like a way of making the design of our systems as easy as possible. This

all comes back to the “creative laziness” that programmers are so famous for. The thing

that we are trying to do here is best expressed as:

“Put off all the hard work for as long as we can, and if possible get someone else to do

it.”

Objects let us do this. If we return to our bank account we can see that there are a

number of things that we need to be able to do with our bank account:

 pay money into the account

 draw money out of the account

 find the balance

 print out a statement

 change the address of the account holder

 print out the address of the account holder

 change the state of the account

 find the state of the account

 change the overdraft limit

 find the overdraft limit

Rather than saying “We need to do these operations on a bank account”, object based

design turns this on its head, a bit like President Kennedy did all those years ago:

“And so, my fellow Americans: ask not what your country can do for you—ask what

you can do for your country” (huge cheers)

We don’t do things to the bank account. Instead we ask it to do these things for us. The

design of our banking application can be thought of in terms of identifying the objects

that we are going to use to represent the information and then specifying what things

they should be able to do. The really clever bit is that once we have decided what the

bank account should do, we then might be able to get somebody else to make it do

these things.

If our specification is correct and they implement it properly, we don’t have to worry

precisely how they made it work – we just have to sit back and take the credit for a job

well done.

This brings us back to a couple of recurring themes in this document; metadata and

testing. What a bank account object should be able to do is part of the metadata for this

object. And once we have decided on the actions that the account must perform, the

next thing we need to do is devise a way in which each of the actions can be tested.

In this section we are going to implement an object which has some of the behaviours

of a proper bank account.

Designing With Objects Data in Objects

C# Programming © Rob Miles 2009 86

Programmer’s Point:Not Everything Should Be Possible

Note that there are also some things that we should not be able to do with our bank account

objects. The account number of an account is something which is unique to that account and should

never change. We can get this behaviour by simply not providing a means by which it can be changed.

It is important at design time that we identify what should not be possible, along with what should

be done. We might even identify some things as being audited, in that an object will keep track of

what has been done to it. That way we can easily find out if bad things are being done.

Data in Objects

So, we can consider our bank account in terms of what we want it to do for us. The first

thing is to identify all the data items that we want to store in it. For the sake of

simplicity, for now I’m just going to consider how I keep track of the balance of the

accounts. This will let me describe all the techniques that are required without getting

bogged down too much.

class Account

{

 public decimal Balance;

} ;

The Account class above holds the member that we need to store about the balance of

our bank accounts. Members of a class which hold a value which describes some data

which the class is holding are often called properties. I’ve used the decimal type for the

account balance, since this is specially designed to hold financial values.

We have seen that each of the data items in a class is a member of it and stored as part

of it. Each time I create an instance of the class I get all the members as well. We have

already seen that it is very easy to create an instance of a class and set the value of a

member:

Account RobsAccount ;

RobsAccount = new Account();

RobsAccount.Balance = 99;

The reason that this works is that the members of the object are all public and this

means that anybody has direct access to them. This means that any programmer writing

the application can do things like:

RobsAccount.Balance = 0;

- and take away all my money. If we are going to provide a way of stopping this from

happening we need to protect the data inside our objects.

Member Protection inside objects

If objects are going to be useful we have to have a way of protecting the data within

them. Ideally I want to get control when someone tries to change a value in my objects,

and stop the change form being made if I don’t like it. The posh word for this is

encapsulation. I want all the important data hidden inside my object so that I have

complete control over what is done with it. This technology is the key to my defensive

programming approach which is geared to making sure that, whatever else happens, my

part of the program does not go wrong.

For example, in our bank program we want to make sure that the balance is never

changed in a manner that we can't control. The first thing we need to do is stop the

outside world from playing with our balance value:

Designing With Objects Data in Objects

C# Programming © Rob Miles 2009 87

class Account

{

 private decimal balance;

} ;

The property is no longer marked as public. Instead it is now private. This means

that the outside world no longer has direct access to it. If I write the code:

RobsAccount.balance = 0;

- I will get an error when I try to compile the program:

PrivateDemo.cs(13,3): error CS0122:

'PrivateMembers.Account.balance' is inaccessible due to its

protection level

The balance value is now held inside the object and is not visible to the outside world.

Changing private members

I can tell what you are thinking at this point. You are thinking “what is the point of

making it private, now you can’t change it at all”. Well, thanks for the vote of

confidence folks. It turns out that I can change the value, but only using code actually

running in the class. Consider the program:

class Account

{

 private decimal balance = 0;

 public bool WithdrawFunds (decimal amount)

 {

 if (balance < amount)

 {

 return false ;

 }

 balance = balance - amount ;

 return true;

 }

} ;

class Bank {

 public static void Main () {

 Account RobsAccount;

 RobsAccount = new Account();

 if (RobsAccount.WithdrawFunds (5))

 {

 Console.WriteLine ("Cash Withdrawn") ;

 }

 else

 {

 Console.WriteLine ("Insufficient Funds") ;

 }

 }

}

This creates an account and then tries to draw five pounds out of it. This will of course

fail, since the initial balance on my account is zero, but it shows how I go about

providing access to members in an account. The method WithdrawFunds is a

member of the Account class and can therefore access private members of the class.

Designing With Objects A Complete Account Class

C# Programming © Rob Miles 2009 88

Programmer’s Point:Metadata makes Members and Methods

I haven’t mentioned metadata for at least five minutes. So perhaps now is a good time. The

metadata that I gather about my bank system will drive how I provide access to the members of my

classes. In the code above the way that I am protecting the balance value is a reflection of how the

customer wants me to make sure that this value is managed properly.

public Methods

You may have noticed that I made the WithdrawFunds method public. This

means that code running outside the class can make calls to that method. This has got to

be the case, since we want people to interact with our objects by calling methods in

them. In general the rules are:

 if it is a data member (i.e. it holds data) of the class, make it private

 if it is a method member (i.e. it does something) make it public

Of course, the rules can be broken on special occasions. If you don’t care about

possible corruption of the member and you want your program to run as quickly as

possible you can make a data member public. If you want to write a method which is

only used inside a class and performs some special, secret, task you can make it

private.

Programmer’s Point:private data and public methods

If you look closely at the code I write (and I would advise you to do this – it is good stuff) you will

find that when I write the name of a public item I use a capital letter to start the name (as in the

case of WithdrawFunds to withdraw from our bank account). But I make the first letter of private

members lower case (as in the case of the balance data member of our bank account). This makes it

easy for someone reading my code, because they can see from the name of a class member whether

or not it is public or private. The convention also extends to variables which are local to a block.

These (for example the ubiquitous i) always start with a lower case letter.

A Complete Account Class

We can now create a bank account class which controls access to the balance value:

Designing With Objects A Complete Account Class

C# Programming © Rob Miles 2009 89

The bank account class that I have created above is quite well behaved. I have created

three methods which I can use to interact with an account object. I can pay money in,

find out how much is there and withdraw cash, for example:

Account test = new Account();

test.PayInFunds(50);

At the end of this set of statements the test account should have 50 pounds in it. If it

does not my program is faulty. The method GetBalance is called an accessor since it

allows access to data in my business object. I could write a little bit of code to test these

methods:

Account test = new Account();

test.PayInFunds(50);

if (test.GetBalance() != 50) {

 Console.WriteLine ("Pay In test failed");

}

My program now tests itself, in that it does something and then makes sure that the

effect of that action is correct. Of course I must still read the output from all the tests,

which is tedious. Later in the course we will consider the use of unit tests which make

this much easier.

public class Account

{

 private decimal balance = 0;

 public bool WithdrawFunds (decimal amount)

 {

 if (balance < amount)

 {

 return false ;

 }

 balance = balance - amount ;

 return true;

 }

 public void PayInFunds (decimal amount)

 {

 balance = balance + amount ;

 }

 public decimal GetBalance ()

 {

 return balance;

 }

}

Static Items Static class members

C# Programming © Rob Miles 2009 90

Programmer’s Point:Test Driven Development – the only way

I love test driven development. If I ever write anything from now on you can bet your boots that I

will write it using a test driven approach. This solves three problems that I can see:

Firstly you don't do the testing at the end of the project. This is usually the worst time to test,

since you might be using code that you wrote some time back. If the bugs are in an old piece of code

you have to go through the effort of remembering how it works. Far better to test the code as you

write it, when you have the best possible understanding of what it is supposed to do.

The second good reason for using a test driven approach is that it lets you write code early in the

project which will probably be useful later on. Many projects are doomed because people start

writing code before they have a proper understanding of the problem. Writing the tests first is

actually a really good way of refining your understanding. And there is a good chance that the tests

that you write will be useful at some point too.

The final reason for using tests is that when I fix bugs in my program I need to be able to convince

myself that the fixes I have applied have not broken some other part (about the most common way

of introducing new faults into a program is to mend a bug). If I have a set of automatic tests that I

can run after every bug fix I have a way of stopping this from happening.

Bank Notes: Protecting Account Members

The bank manager approves of our use of private and public. This means that

other programmers (i.e. the people who write systems which use the Account class

instances in the bank) will not be allowed unrestricted access to the very important

information held inside them. This is very important.

Static Items

At the moment all the members that we have created in our class have been part of an

instance of the class. This means that whenever we create an instance of the Account

class we get a balance member. However, we can also create members which are

held as part of the class, i.e. they exist outside of any particular instance.

Static class members

The static keyword lets us create members which are not held in an instance, but in

the class itself.

It is very important that you learn what static means in the context of C# programs.

We have used it lots in just about every program that we have ever written:

Static Items Static class members

C# Programming © Rob Miles 2009 91

class AccountTest {

 public static void Main () {

 Account test = new Account();

 test.PayInFunds (50);

 Console.WriteLine ("Balance:" + test.GetBalance());

 }

}

The AccountTest class has a static member method called Main. We know that

this is the method which is called to run the program. It is part of the class

AccountTest. If I made fifty AccountTest instances, they would all share the

same Main method. In terms of C# the keyword static flags a member as being part

of the class, not part of an instance of the class. I will write that down again in a posh

font, for it is important:

“A static member is a member of the class, not

a member of an instance of the class”
I don't have to make an instance of the AccountTest class to be able to use the

Main method. This is how my program actually gets to work, in that when it starts it

has not made any instances of anything, and so this method must be there already,

otherwise it cannot run.

Static does not mean "cannot be changed". I think this is time for more posh font stuff:

Static does not mean "cannot be changed".
Members of a class which have been made static can be used just like any other

member of a class. Either a data member or a method can be made static.

Using a static data member of a class

Perhaps an example of static data would help at this point. Consider the interest

rates of our bank accounts. The customer has told us that one of the members of the

account class will need to be the interest rate on accounts. In the program we can

implement this by adding another member to the class which holds the current interest

rate:

public class Account {

 public decimal Balance ;

 public decimal InterestRateCharged ;

}

Now I can create accounts and set balances and interest rates on them. (of course if I

was doing this properly I'd make this stuff private and provide methods etc, but I'm

keeping things simple just now).

Account RobsAccount = new Account();

RobsAccount.Balance = 100;

RobsAccount.InterestRateChanged = 10;

The snag is; I've been told that the interest rate is held for all the accounts. If the

interest rate changes it must change for all accounts. This means that to implement the

change I'd have to go through all the accounts and update the rate. This would be

tedious, and if I missed one account, possibly expensive.

I solve the problem by making the interest rate member static:

Static Items Static class members

C# Programming © Rob Miles 2009 92

public class Account {

 public decimal balance ;

 public static decimal interestRateCharged ;

}

The interest rate is now part of the class, not part of any instance. This means that I

have to change the way that I get hold of it:

Account RobsAccount = new Account();

RobsAccount.Balance = 100;

Account.InterestRateChanged = 10;

Since it is a member of the class I now have to use the class name to get hold of it

instead of the name of the instance reference.

Programmer’s Point:Static Data Members are Useful and Dangerous

When you are collecting metadata about your project you should look for things which can be made

static. Things like the limits of values (the largest age that you are going to permit a person to

have) can be made static. There might be a time where the age limit changes, and you don't want to

have to update all the objects in your program.

But of course, as Spiderman's uncle said, "With great power comes great responsibility". You should

be careful about how you provide access to static data items. A change to a single static value will

affect your entire system. So they should always be made private and updated by means of method

calls.

Using a static method in a class

We can make methods static too. We have been doing this for ages with the Main

method. But you can also use them when designing your system. For example, we

might have a method which decides whether or not someone is allowed to have a bank

account. It would take in their age and income. It would then return true or false

depending on whether these are acceptable or not:

public bool Allowed (decimal income, int age) {

 if ((income >= 10000) && (age >= 18)) {

 return true;

 }

 else {

 return false;

 }

}

This checks the age and income; you must be over 17 and have at least 1000 pounds

income to be allowed an account. The snag is that, at the moment, we can't call the

method until we have an Account instance. We can solve this by making the method

static:

public static bool Allowed (decimal income, int age) {

 if ((income >= 10000) && (age >= 18)) {

 return true;

 }

 else {

 return false;

 }

}

Now the method is part of the class, not an instance of the class. I can now call the

method by using the class name:

Static Items Static class members

C# Programming © Rob Miles 2009 93

if (Account.Allowed (25000, 21)) {

 Console.WriteLine ("Allowed Account");

}

This is nice because I have not had to make an instance of the account to find out if one

is allowed..

Using member data in static methods

The Allowed method is OK, but of course I have hard wired the age and income

methods into it. I might decide to make the method more flexible:

public class Account {

 private decimal minIncome = 10000;

 private int minAge = 18;

 public static bool Allowed(decimal income, int age) {

 if ((income >= minIncome) && (age >= minAge)) {

 return true;

 }

 else {

 return false;

 }

 }

}

This is a better design, in that I now have members of the class which set out the upper

limits of the age and income. However it is a bad program, since the class above will

not compile:

AccountManagement.cs(19,21): error CS0120: An object

reference is required for the nonstatic field, method, or

property 'Account.minIncome'

AccountManagement.cs(19,43): error CS0120: An object

reference is required for the nonstatic field, method, or

property 'Account.minAge'

As usual, the compiler is telling us exactly what is wrong; using language which makes

our heads spin. What the compiler really means is that "a static method is using a

member of the class which is not static".

If that doesn’t help, how about this: The members minIncome and minAge are held

within instances of the Account class. However, a static method can run without an

instance (since it is part of the class). The compiler is unhappy because in this situation

the method would not have any members to play with. We can fix this (and get our

program completely correct) by making the income and age limits static as well:

The Construction of Objects Static class members

C# Programming © Rob Miles 2009 94

public class Account {

 private static decimal minIncome ;

 private static int minAge ;

 public static bool Allowed(decimal income, int age) {

 if ((income > minIncome) && (age > minAge)) {

 return true;

 }

 else {

 return false;

 }

 }

}

If you think about it, this makes perfect sense. The limit values should not be held as

members of a class, since we want them to be the same for all instances of the class,

therefore, making them static is what we should have done in the first place.

Programmer’s Point:Static Method Members can be used to make

Libraries

Sometimes in a development you need to provide a library of methods to do stuff. In the C# system

itself there are a huge number of methods to perform maths functions, for example sin and cos. It

makes sense to make these methods static, in that in this situation all we want is the method itself,

not an instance of a class. Again, when you are building your system you should think about how you

are going to make such methods available for your own use.

Bank Notes: Static Bank Information

The kind of problems that we can use static to solve in our bank are:

static member variable: the manager would like us to be able to set the interest rate

for all the customer accounts at once. A single static member of the Account class will

provide a variable which can be used inside all instances of the class. But because there

is only a single copy of this value this can be changed and thereby adjust the interest

rate for all the accounts. Any value which is held once for all classes (limits on values

are another example of this) is best managed as a static value. The time it becomes

impossible to use static is when the manager says "Oh, accounts for five year olds have

a different interest rate from normal ones". At this point we know we can’t use static

because we need to hold different values for some of the instances.

static member method: the manager tells us that we need a method to determine

whether or not a given person is allowed to have an account. I can't make this part of

any Account instance because at the time it runs an account has not been generated. I

must make it static, so that it can execute without an instance.

The Construction of Objects

We have seen that our objects are created when we use new to bring one into being:

test = new Account();

If you look closely at what is happening you might decide that what is happening looks

quite a bit like a method call.

The Construction of Objects The Default Constructor

C# Programming © Rob Miles 2009 95

This is actually exactly what is happening. When an instance of a class is created the

C# system makes a call to a constructor method in that class. The constructor method is

a member of the class and it is there to let the programmer get control and set up the

contents of the shiny new object. One of the rules of the C# game is that every single

class must have a constructor method to be called when a new instance is created.

“But wait a minute”, you say, “We’ve been making objects for a while and I’ve never

had to provide a constructor method”. This is because the C# compiler is, for a change,

being friendly here. Rather than shout at you for not providing a constructor method,

the compiler instead quietly creates a default one for you and uses that.

You might think this is strange, in that normally the compiler loses no time in telling

you off when you don’t do something, but in this case it is simply solving the problem

without telling you. There are two ways to look at this:

 nice compiler: the compiler is trying to make life easier for you

 evil compiler: the compiler knows that if it does this automatically now you

will suffer more later when you try to understand why you don’t need to add

one

How you regard the action of the compiler is up to you.

The Default Constructor

A constructor method has the same name as the class, but it does not return anything. It

is called when we perform new. If you don’t supply a constructor (and we haven’t so

far) the compiler creates one for us.

public class Account {

 public Account () {

 }

}

This is what the default constructor looks like. It is public so that it can be accessed

from external classes who might want to make instances of the class. It accepts no

parameters. If I create my own constructor the compiler assumes that I know what I’m

doing and stops providing the default one. This can cause problems, which we will

discuss later.

Our Own Constructor

For fun, we could make a constructor which just prints out that it has been called:

public class Account {

 public Account () {

 Console.WriteLine ("We just made an account");

 }

}

This constructor is not very constructive (ho ho) but it does let us know when it has

been called. This means that when my program executes the line:

robsAccount = new Account();

- the program will print out the message:

We just made an account

Note that this is not very sensible, in that it will result in a lot of printing out which the

user of the program might not appreciate, but it does show how the process works.

The Construction of Objects Overloading Constructors

C# Programming © Rob Miles 2009 96

Feeding the Constructor Information

It is useful to be able to get control when an Account is created, but it would be even

nicer to be able to feed information into the Account when I create it. As an example,

I might want to set the name, address, and initial balance of an account holder when the

account is created. In other words I want to do:

robsAccount = new Account("Rob Miles", "Hull", 0);

This could create a new account and set the name property to Rob Miles, the address

to Hull and the initial balance to zero. It turns out that I can do this very easily, all I

have to do is make the constructor method to accept these parameters and use them to

set up the members of the class:

class Account {

 // private member data

 private string name;

 private string address;

 private decimal balance;

 // constructor

 public Account (string inName, string inAddress,

 decimal inBalance) {

 name = inName;

 address = inAddress;

 balance = inBalance;

 }

}

The constructor takes the values supplied in the parameters and uses them to set up the

members of the Account instance that is being created. In this respect it behaves

exactly as any other method call.

Note that adding a constructor like this has one very powerful ramification:

You must use the new constructor to make an instance of a class, i.e. the only way I can

now make an Account object is by supplying a name, address and starting balance. If

I try to do this:

robsAccount = new Account();

- the compiler will stop being nice to me and produce the error:

AccountTest.cs(9,27): error CS1501: No overload for method

'Account' takes '0' arguments

What the compiler is telling me is that there is no constructor in the class which does

not have any parameters. In other words, the compiler only provides a default

constructor if the programmer doesn't provide a constructor.

This can cause confusion if we have made use of the default constructor in our program

and we then add one of our own. The default constructor is no longer supplied by the

compiler and our program now fails to compile correctly. In that situation you have to

either find all the calls to the default one and update them, or create a default

constructor of your own for these calls to use. Of course you don't have to do this

because your design of the program was so good that you never have this problem. Just

like me, hem hem.

Overloading Constructors

Overload is an interesting word. In the context of the "Star Trek" science fiction series

it is what they did to the warp engines in every other episode. In the context of a C#

program it means:

"A method has the same name as another, but has a different set of parameters"

The Construction of Objects Constructor Management

C# Programming © Rob Miles 2009 97

The compiler is quite happy for you to overload methods, because it can tell from the

parameters given at the call of the method which one to use. In the context of the

constructor of a class, what this means is that you can provide several different ways of

constructing an instance of a class. For example, many (but not all) of your accounts

will be created with a balance value of zero, i.e. nothing in the account. This means that

we would like to be able to write

robsAccount = new Account("Rob Miles","Hull");

I've missed off the balance value, since I want to use the "default" one of zero. If your

code does this the compiler simply looks for a constructor method which has two

strings as parameters, and nothing else. Something a bit like this:

public Account (string inName, string inAddress){

 name = inName;

 address = inAddress;

 balance = 0;

}

Overloading a method name

In fact, you can overload any method name in your classes. This can be useful if you

have a particular action which can be driven by a number of different items of data, for

example you could provide several ways of setting the date of a transation:

SetDate (int year, int month, int day)

SetDate (int year, int julianDate)

SetDate (string dateInMMDDYY)

A call of:

SetDate (23, 7, 2005);

- would be matched up with the method which accepts three integer parameters and that

code would be executed.

Constructor Management

If the Account class is going to have lots of constructor methods this can get very

confusing for the programmer:

public Account (string inName, string inAddress,

 decimal inBalance) {

 name = inName;

 address = inAddress;

 balance = inBalance;

}

public Account (string inName, string inAddress){

 name = inName;

 address = inAddress;

 balance = 0;

}

public Account (string inName) {

 name = inName;

 address = "Not Supplied";

 balance = 0;

}

I've made three constructors for an Account instance. The first is supplied with all the

information, the second is not given a balance and sets the value to 0. The third is not

given the address either, and sets the address to "Not Supplied".

The Construction of Objects A constructor cannot fail

C# Programming © Rob Miles 2009 98

To do this I have had to duplicate code. Good programmers hate duplicating code. It is

regarded as "dangerous extra work". The scary thing is that it is quite easy to do, just

use the block copy command in the text editor and you can take the same piece of

program and use it all over the place. But you should not do this. Because it is bad. If

you need to change this piece of code you have to find every copy of the code and

change it.

This happens more often than you'd think, even if you don't put a bug in your code, you

still might find yourself having to change it because the specification changes. So, C#

provides a way in which you can call one constructor from another. Consider:

public Account (string inName, string inAddress,

 decimal inBalance) {

 name = inName;

 address = inAddress;

 balance = inBalance;

}

public Account (string inName, string inAddress) :

 this (inName, inAddress, 0) {

}

public Account (string inName) :

 this (inName, "Not Supplied", 0) {

}

The keyword this means "another constructor in this class". As you can see in the

code sample above, the highlighted bits of the code are calls to the first constructor.

They simply pass the parameters which are supplied, along with any default values that

we have created, on to the "proper" constructor to deal with. This means that the actual

transfer of the values from the constructor into the object itself only happens in one

method, and the other constructor methods just make calls to it.

The syntax of these calls is rather interesting, in that the call to the constructor takes

place before the body of the constructor method. In fact it is outside the block

completely. This is sensible, because it reflects exactly what is happening. The "this"

constructor runs before the body of the other constructor is entered. In fact, in the code

above, since the call of this does all the work, the body of the constructor can be

empty.

Programmer’s Point:Object Construction Should Be Planned

The way in which objects are constructed is something that you should plan carefully when you write

your program. You should create one "master" constructor which handles the most comprehensive

method of constructing the object. Then you should make all the other constructor methods use

this to get hold of that method.

A constructor cannot fail

If you watch a James Bond movie there is usually a point at which 007 is told that the

fate of the world is in his hands. Failure is not an option. Constructors are a bit like this.

Constructors cannot fail. And this is a problem:

Whenever we have written methods in the past we have made sure that their behaviour

is error checked so that the method cannot upset the state of our object. For example,

attempts to withdraw negative amounts of money from a bank account should be

rejected.

The whole basis of the way that we have allowed our objects to be manipulated is to

make sure that they cannot be broken by the people using them. If you try to do

The Construction of Objects A constructor cannot fail

C# Programming © Rob Miles 2009 99

something stupid with a method call it should refuse to perform the action and return

something which indicates that it could not do the job.

So we know that when we create a method which changes the data in an object we have

to make sure that the change is always valid. For example, we would not let the

following call succeed:

RobsAccount.PayInFunds (1234567890);

There will be an upper limit to the amount of cash you can pay in at once, so the

PayInFunds method will refuse to pay the money in. But what is to stop the

following:

RobsAccount = new Account ("Rob","Hull",1234567890);

Like James Bond, constructors are not allowed to fail. Whatever happens during the

constructor call, it will complete and a new instance will be created.

This poses a problem. It looks as if we can veto stupid values at every point except the

one which is most important, i.e. when the object is first created.

Programmer’s Point:Managing Failure is Hard Work

This brings us on to a kind of recurring theme in our quest to become good programmers. Writing

code to do a job is usually very easy. Writing code which will handle all the possible failure

conditions in a useful way is much trickier. It is a fact of programming life that you will (or at least

should) spend more time worrying about how things fail than you ever do about how they work

correctly.

Constructors and Exceptions

The only way round this at the moment is to have the constructor throw an exception if

it is unhappy. This means that the user of the constructor must make sure that they catch

exceptions when creating objects, which is not a bad thing. The really clever way to do

this is to make the constructor call the set methods for each of the properties that it has

been given, and if any of them returns with an error the constructor should throw the

exception at that point:

 public Account (string inName, string inAddress){

 if (SetName (inName) == false) {

 throw new Exception ("Bad name " + inName) ;

 }

 if (SetAddress (inAddress) == false) {

 throw new Exception ("Bad address" + inAddress) ;

 }

 }

If we try to create an account with a bad name it will throw an exception, which is what

we want. The only problem here is that if the address is wrong too, the user of the

method will not know this until they have fixed the name and then called the

constructor again.

I hate it when I'm using a program and this happens. It is normally when I'm filling in a

form on the web. I type in my name wrong and it complains about that. Then I put my

name right, and it complains about my address. What I want is a way in which I can get

a report of all the invalid parts of the item at once. This can be done, at the expense of a

little bit of complication:

From Object to Component Bank Notes: Constructing an Account

C# Programming © Rob Miles 2009 100

public Account (string inName, string inAddress){

 string errorMessage = "";

 if (SetName (inName) == false) {

 errorMessage = errorMessage + "Bad name " + inName;

 }

 if (SetAddress (inAddress) == false) {

 errorMessage = errorMessage + " Bad addr " + inAddress;

 }

 if (errorMessage != "") {

 throw new Exception ("Bad account" + errorMessage) ;

 }

 }

This version of the constructor assembles an error message which describes everything

which is wrong with the account. Each new thing which is wrong is added to the

message and then the whole thing is put into an exception and thrown back to the caller.

Programmer’s Point:Consider the International Issues

The code above assembles a text message and sends it to the user when something bad happens.

This is a good thing. However, if you write the program as above this might cause a problem when

you install the code in a French branch of the bank. During the specification process you need to

establish if the code is ever going to be created in multiple language versions. If it is you will need

to manage the storage and selection of appropriate messages. Fortunately there are some C#

libraries which are designed to make this easier.

Bank Notes: Constructing an Account

The issues revolving around the constructor of a class are not directly relevant to the

bank account specification as such, since they really relate to how the specification is

implemented, and not what the system itself actually does.

That said, if the manager says something like "The customer fills in a form, enters their

name and address and this is used to create the new account" this gives you a good idea

of what parameters should be supplied to the constructor.

From Object to Component

I take the view that as you develop as a software writer you go through a process of

"stepping back" from problems and thinking at higher and higher levels. Posh people

call this "abstraction". This is the progress that we have made so far:

 representing values by named locations (variables)

 creating actions which work on the variables (statements and blocks)

 putting behaviours into lumps of code which we can give names to. We can

reuse these behaviours and also use them in the design process (methods)

 creating things which contain member variables as properties and member

methods as actions (objects)

Rather than spend a lot of time at the start of a project worrying just how we are going

represent an account and precisely what it should do, we just say "We need an account

here" and then move on to other things. Later we will come back and revisit the

problem in a greater level of detail, and from the point of view of what the Account

class needs to do.

From Object to Component Components and Hardware

C# Programming © Rob Miles 2009 101

The next thing to do is consider how we take a further step back and consider

expressing a solution using components and interfaces. In this section you will find out

the difference between an object and a component, and how to design systems using

them.

Components and Hardware

Before we start on things from a software point of view it is probably worth considering

things from a hardware point of view. You should be familiar with the way that, in a

typical home computer, some parts are not "hard wired" to the system. For example, the

graphics adapter is usually a separate device which is plugged into the main board. This

is good; because it means that I can buy a new graphics adapter at any time and fit it

into the machine to improve the performance.

For this to work properly the people who make main boards and the people who make

graphics adapters have had to agree on an interface between two devices. This takes the

form of a large document which describes exactly how the two components interact, for

example which signals are inputs, which signals are outputs and so on. Any main board

which contains a socket built to the standard can accept a graphics card.

So, from the point of view of hardware, components are possible because we have

created standard interfaces which describe exactly how they fit together.

Software components are exactly the same.

Why we Need Software Components?

At the moment you might not see a need for software components. When we are

creating a system we work out what each of the parts of it need to do, and then we

create those parts. It is not obvious at this stage why components are required.

Well, a system designed without components is exactly like a computer with a graphics

adapter which part of the main board. It is not possible for me to improve the graphics

adapter because it is "hard wired" into the system.

However, it is unfortunately the case that with our bank system we may have a need to

create different forms of bank account class. For example, we might be asked to create

a "BabyAccount" class which only lets the account holder draw out up to ten pounds

each time. This might happen even after we have installed the system and it is being

used.

If everything has been hard wired into place this will be impossible. By describing

objects in terms of their interfaces however, we can use anything which behaves like an

Account in this position.

Components and Interfaces

One point I should make here is that we are not talking about the user interface to our

program. The user interface is the way a person using our program would make it work

for them. These are usually either text based (the user types in commands and gets

responses) or graphical (the user clicks on “buttons” on a screen using the mouse).

An interface on the other hand just specifies how a software component could be used

by another software component. Please don’t be tempted to answer an exam question

about the C# interface mechanism with a long description of how windows and buttons

work. This will earn you zero marks.

From Object to Component Implementing an Interface in C#

C# Programming © Rob Miles 2009 102

Interfaces and Design

So, instead of starting off by designing classes we should instead be thinking about

describing their interfaces, i.e. what it is they have to do. In C# we express this

information in a thing called an interface. An interface is simply a set of method

definitions which are lumped together.

Our first pass at a bank account interface could be as follows:

public interface IAccount {

 void PayInFunds (decimal amount);

 bool WithdrawFunds (decimal amount);

 decimal GetBalance ();

}

This says that the IAccount interface is comprised of three methods, one to pay

money in; another to withdraw it and a third which returns the balance on the account.

From the balance management point of view this is all we need. Note that at the

interface level I am not saying how it should be done, I am instead just saying what

should be done. An interface is placed in a source file just like a class, and compiled in

the same way. It sets out a number of methods which relate to a particular task or role,

in this case what a class must do to be considered a bank account.

Implementing an Interface in C#

Interfaces become interesting when we make a class implement them. Implementing an

interface is a bit like a setting up a contract between the supplier of resources and the

consumer. If a class implements an interface it is saying that for every method

described in the interface, it has a corresponding implementation.

In the case of the bank account, I am going to create a class which implements the

interface, so that it can be thought of as an account component, irrespective of what it

really is:

public class CustomerAccount : IAccount {

 private decimal balance = 0;

 public bool WithdrawFunds (decimal amount)

 {

 if (balance < amount)

 {

 return false ;

 }

 balance = balance - amount ;

 return true;

 }

 public void PayInFunds (decimal amount)

 {

 balance = balance + amount ;

 }

 public decimal GetBalance ()

 {

 return balance;

 }

}

The code above does not look that different from the previous account class. The only

difference is the top line:

From Object to Component References to Interfaces

C# Programming © Rob Miles 2009 103

public class CustomerAccount : IAccount {

...

The highlighted part of the line above is where the programmer tells the compiler that

this class implements the IAccount interface. This means that the class contains

concrete versions of all the methods described in the interface. If the class does not

contain a method that the interface needs you will get a compilation error:

error CS0535: 'AccountManagement.CustomerAccount' does not

implement interface member

'AccountManagement.IAccount.PayInFunds(decimal)'

In this case I missed out the PayInFunds method and the compiler complained

accordingly.

References to Interfaces

Once we have made the CustomerAccount class compile, we have now got

something which can be regarded in two ways:

 as a CustomerAccount (because that is what it is)

 as an IAccount (because that is what it can do)

People do this all the time. You can think of me in a whole variety of ways, here are

two:

 Rob Miles the individual (because that is who I am)

 A university lecturer (because that is what I can do)

If you think of me as a lecturer you would be using the interface that contains methods

like GiveLecture. And you can use the same methods with any other lecturer (i.e.

person who implements that interface). From the point of view of the university, which

has to manage a large number of interchangeable lecturers, it is much more useful for it

to think of me as a lecturer, rather than Rob Miles the individual.

So, with interfaces we are moving away from considering classes in terms of what they

are, and starting to think about them in terms of what they can do. In the case of our

bank, this means that we want to deal with objects in terms of IAccount,(the set of

account abilities) rather than CustomerAccount (a particular account class).

In C# terms this means that we need to be able to create reference variables which refer

to objects in terms of interfaces they implement, rather than the particular type that they

are. It turns out that this is quite easy:

IAccount account = new CustomerAccount();

account.PayInFunds(50);

The account variable is allowed to refer to objects which implement the IAccount

interface. The compiler will check to make sure that CustomerAccount does this,

and if it does, the compilation is successful.

Note that there will never be an instance of IAccount interface. It is simply a way

that we can refer to something which has that ability (i.e. contains the required

methods).

This is the same in real life. There is no such physical thing as a "lecturer", merely a

large number of people who can be referred to as having that particular ability or role.

Using interfaces

Now that we have our system designed with interfaces it is much easier to extend it. I

can create a BabyAccount class which implements the IAccount interface. This

From Object to Component Implementing Multiple Interfaces

C# Programming © Rob Miles 2009 104

implements all the required methods, but they behave slightly differently because we

want all withdrawals of over ten pounds to fail:

public class BabyAccount : IAccount {

 private decimal balance = 0;

 public bool WithdrawFunds (decimal amount)

 {

 if (amount > 10)

 {

 return false ;

 }

 if (balance < amount)

 {

 return false ;

 }

 balance = balance - amount ;

 return true;

 }

 public void PayInFunds (decimal amount)

 {

 balance = balance + amount ;

 }

 public decimal GetBalance ()

 {

 return balance;

 }

}

The nice thing about this is that as it is a component we don’t have to change all the

classes which use it. When we create the account objects we just have ask if a standard

account or a baby account is required. The rest of the system can then pick up this

object and use it without caring exactly what it is. We will of course have to create

some tests especially for it, so that we can make sure that withdrawals of more than ten

pounds do fail, but using the new kind of account in our existing system is very easy.

Implementing Multiple Interfaces

A component can implement as many interfaces as are required. The IAccount

interface lets me regard a component purely in terms of its ability to behave as a bank

account. However, I may want to regard a component in a variety of ways. For

example, the bank will want the account to be able to print itself out on paper.

You might think that all I have to do is add a print method to the IAccount interface.

This would be reasonable if all I ever wanted to print was bank accounts. However,

there will be lots of things which need to be printed, for example warning letters,

special offers and the like. Each of these items will be implemented in terms of a

component which provides a particular interface (IWarning, ISpecialOffer for

example). I don't want to have to provide a print method in each of these, what I really

want is a way that I can regard an object in terms of its ability to print.

This is actually very easy. I create the interface:

public interface IPrintToPaper {

 void DoPrint ();

}

Now anything which implements the IPrintToPaper interface will contain the

DoPrint method and can be thought of in terms of its ability to print.

A class can implement as many interfaces as it needs. Each interface is a new way in

which it can be referred to and accessed.

From Object to Component Designing with Interfaces

C# Programming © Rob Miles 2009 105

public class BabyAccount : IAccount, IPrintToPaper {

...

This means that a BabyAccount instance behaves like an account and it also contains

a DoPrint method which can be used to make it print out.

Designing with Interfaces

If you apply the "abstraction" technique properly you should end up with a system

creation process which goes along the lines of:

 gather as much metadata as you can about the problem; what is important to

the customer, what values need to be represented and manipulated and the

range of those values

 identify classes that you will have to create to represent the components in the

problem

 identify the actions (methods) and the values (properties) that the components

must provide

 put these into interfaces for each of the components

 decide how these values and actions are to be tested

 implement the components and test them as you go

You can/should do much of this on paper, before you write any code at all. There are

also graphical tools that you can use to draw formal diagrams to represent this

information. The field of Software Engineering is entirely based on this process.

Programmer’s Point:Interfaces are just promises

An interface is less of a binding contract, and more a promise. Just because a class has a method

called PayInFunds does not mean that it will pay money into the account; it just means that a

method with that name exists within the class. Nothing in C# allows you to enforce a particular

behaviour on a method; that is down to how much you trust the programmer that made the class

that you are using, and how good your tests are. In fact, we sometimes use this to good effect when

building a program, in that we can create "dummy" components which implement the interface but

don't have the behaviour as such.

Bank Notes: Account Interfaces

The interface mechanism gives us a great deal of flexibility when making our

components and fitting them together. It means that once we have found out what our

bank account class needs to hold for us we can then go on to consider what we are

going to ask the accounts to do. This is the real detail in the specification. Once we

have set out an interface for a component we can then just think in terms of what the

component must do, not precisely how it does it.

For example, the manager has told us that each bank account must have an account

number. This is a very important value, in that it will be fixed for the life of the account

and can never be changed. No two accounts should ever have the same number.

From the point of view of interface design this means that the account number will be

set when the account is created and the account class will provide a method to let us get

the value (but there will not be a method to set the account number).

We don't care what the method GetAccountNumber actually does, as long as it

always returns the value for a particular account. So this requirement ends up being

expressed in the interface that is implemented by the account class.

Inheritance Extending a parent class

C# Programming © Rob Miles 2009 106

interface IAccount {

 int GetAccountNumber ();

}

This method returns the integer which is the account number for this instance. By

placing it in the interface we can say that the account must deliver this value, but we

have not actually described how this should be done. The design of the interfaces in a

system is just this. They state that we have a need for behaviours, but they do not

necessarily state how they are made to work. I have added comments to give more

detail about what the method does.

The need for things like account numbers, which really need to be unique in the world,

has resulted in the creation of a set of methods in the C# libraries to create things called

Globally Unique Identifiers or GUIDs. These are data items which are created based on

the date, time and certain information about the host computer. Each GUID is unique in

the world. We could use these in our Account constructor to create a GUID which

allows each account to have a unique number.

Inheritance

Inheritance is another way we can implement creative laziness. It is a way that we can

pick up behaviours from classes and just modify the bits we need to make new ones. In

this respect you can regard it as a mechanism for what is called code reuse. It can also

be used at the design stage of a program if you have a set of related objects that you

wish to create.

Inheritance lets a class pick up behaviours from the class which is its parent. You can

regard an interface as a statement by a class that it has a set of behaviours because it

implements a given interface. If a class is descended from a particular parent class this

means that it has a set of behaviours because it has inherited them from its parent. In

short:

Interface: "I can do these things because I have told you I can"

Inheritance: "I can do these things because my parent can"

Extending a parent class

We can see an example of a use for inheritance in our bank account project. We have

already noted that a BabyAccount must behave just like a CustomerAccount

except in respect of the cash withdrawal method. Customer accounts can draw out as

much as they want. Baby accounts are only allowed to draw up to 10 pounds out at a

time.

We have solved this problem from a design point of view by using interfaces. By

separating the thing that does the job from the description of the job (which is what an

interface lets you do) we can get the whole banking system thinking in terms of

IAccount and then plug in accounts with different behaviours as required. We can

even create brand new accounts at any time after the system has been deployed. These

can be introduced and work alongside the others because they behave correctly (i.e.

they implement the interface).

But this does make things a bit tiresome when we write the program. We need to create

a BabyAccount class which contains a lot of code which is duplicated in the

CustomerAccount class. "This is not a problem" you probably think "I can use the

editor block copy to move the program text across". But:

Inheritance Overriding methods

C# Programming © Rob Miles 2009 107

Programmer’s Point:Block Copy is Evil

I still make mistakes when I write programs. You might think that after such a huge number of

years in the job I get everything right every time. Wrong. And a lot of the mistakes that I make

are caused by improper use of block copy. I write some code and find that I need something similar,

but not exactly the same, in another part of the program. So I use block copy. Then I change most,

but not all, of the new code and find that my program doesn't work properly.

Try not to do this. A great programmer writes every piece of code once, and only once. If you need

to use it in more than one place, make it a method.

What we really want to do is pick up all the behaviours in the CustomerAccount

and then just change the one method that needs to behave differently. It turns out that

we can do this in C# using inheritance. When I create the BabyAccount class I can

tell the compiler that it is based on the CustomerAccount one:

public class BabyAccount : CustomerAccount,IAccount {

}

The key thing here is the highlighted part after the class name. I have put the name of

the class that BabyAccount is extending. This means that everything that

CustomerAccount can do, BabyAccount can do.

I can now write code like:

BabyAccount b = new BabyAccount();

b.PayInFunds(50);

This works because, although BabyAccount does not have a PayInFunds method,

the parent class does. This means that the PayInFunds method from the

CustomerAccount class is used at this point.

So, instances of the BabyAccount class have abilities which they pick up from their

parent class. In fact, at the moment, the BabyAccount class has no behaviours of its

own; it gets everything from its parent.

Overriding methods

We now know that we can make a new class based on an existing one. The next thing

we need to be able to do is change the behaviour of the one method that we are

interested in. We want to replace the WithdrawFunds method with a new one. This

is called overriding a method. In the BabyAccount class I can do it like this:

public class BabyAccount : CustomerAccount,IAccount {

 public override bool WithdrawFunds (decimal amount)

 {

 if (amount > 10)

 {

 return false ;

 }

 if (balance < amount)

 {

 return false ;

 }

 balance = balance - amount ;

 return true;

 }

}

The keyword override means "use this version of the method in preference to the one in

the parent". This means that code like:

Inheritance Overriding methods

C# Programming © Rob Miles 2009 108

BabyAccount b = new BabyAccount();

b.PayInFunds(50);

b.WithdrawFunds(5);

The call of PayInFunds will use the method in the parent (since that has not been

overridden) but the call of WithdrawFunds will use the method in BabyAccount.

Virtual Methods

Actually, there is one other thing that we need to do in order for the overriding to work.

The C# compiler needs to know if a method is going to be overridden. This is because

it must call an overridden method in a slightly different way from a "normal" one. In

other words, the above code won't compile properly because the compiler has not been

told that WithDrawFunds might be overridden in classes which are children of the

parent class.

To make the overriding work correctly I have to change my declaration of the method

in the CustomerAccount class.

public class CustomerAccount : IAccount {

 private decimal balance = 0;

 public virtual bool WithdrawFunds (decimal amount)

 {

 if (balance < amount)

 {

 return false ;

 }

 balance = balance - amount ;

 return true;

 }

 public void PayInFunds (decimal amount)

 {

 balance = balance + amount ;

 }

 public decimal GetBalance ()

 {

 return balance;

 }

}

The keyword virtual means “I might want to make another version of this method in

a child class”. You don’t have to override the method, but if you don’t have the word

present, you definitely can’t.

This makes override and virtual a kind of matched pair. You use virtual to

mark a method as able to be overridden and override to actually provide a

replacement for the method.

Protection of data in class hierarchies

It turns out that the code above still won’t work. This is because the balance value in

the CustomerAccount class is private. We carefully made it private so that

methods in other classes can’t get hold of the value and change it directly.

However, this protection is too strict, in that it stops the BabyAccount class from

being able to change the value. To get around this problem C# provides a slightly less

restrictive access level called protected. This makes the member visible to classes

which extend the parent. In other words, methods in the BabyAccount class can see

and use a protected member because they are in the same class hierarchy as the class

containing the member.

Inheritance Bank Notes: Overriding for Fun and Profit

C# Programming © Rob Miles 2009 109

A class hierarchy is a bit like a family tree. Every class has a parent and can do all the

things that the parent can do. It also has access to all the protected members of the

classes above it.

public class CustomerAccount : IAccount {

 protected decimal balance = 0;

}

I’m not terribly happy about doing this, the balance is very important to me and I’d

rather that nobody outside the CustomerAccount class could see it. However, for

now making this change will make the program work. Later we will see better ways to

manage this situation.

Bank Notes: Overriding for Fun and Profit

The ability to override a method is very powerful. It means that we can make more

general classes (for example the CustomerAccount) and customise it to make them

more specific (for example the BabyAccount). Of course this should be planned and

managed at the design stage. This calls for more metadata to be gathered from the

customer and used to decide which parts of the behaviour need to be changed during

the lift of the project. We would have made the WithDrawFunds method virtual

because the manager would have said “We like to be able to customise the way that

some accounts withdraw funds”. And we would have written this down in the

specification.

Using the base method

Remember that programmers are essentially lazy people who try to write code only

once for a given problem. Well, it looks as if we are breaking our own rules here, in

that the WithDrawFunds method in the BabyAccount class contains all the code

of the method in the parent class.

We have already noted that we don’t like this much, in that it means that the balance

value has to be made more exposed that we might like. Fortunately the designers of C#

have thought of this and have provided a way that you can call the base method from

one which overrides it.

The word base in this context means “a reference to the thing which has been

overridden”. I can use this to make the WithDrawFunds method in my

BabyAccount much simpler:

public class BabyAccount : CustomerAccount,IAccount {

 public override bool WithdrawFunds (decimal amount)

 {

 if (amount > 10)

 {

 return false ;

 }

 return base.WithdrawFunds(amount);

 }

}

The very last line of the WithDrawFunds method makes a call to the original

WithDrawFunds method in the parent class, i.e. the one that the method overrides.

It is important that you understand what I’m doing here, and why I’m doing it:

 I don’t want to have to write the same code twice

Inheritance Making a Replacement Method

C# Programming © Rob Miles 2009 110

 I don’t want to make the balance value visible outside the

CustomerAccount class.

The use of the word base to call the overridden method solves both of these problems

rather beautifully. Because the method call returns a bool result I can just send

whatever it delivers. By making this change I can put the balance back to private

in the CustomerAccount because it is not changed outside it.

Note that there are other useful spin-offs here. If I need to fix a bug in the behaviour of

the WithDrawFunds method I just fix it once, in the top level class, and then it is

fixed for all the classes which call back to it.

Making a Replacement Method

This bit is rather painful, but don’t worry too much since it actually does make sense

when you think about it. If you play around with C# you will find out that you don’t

actually seem to need the virtual keyword to override a method. If I leave it out

(and leave out the override too) the program seems to work fine.

This is because in this situation there is no overriding, you have just supplied a new

version of the method (in fact the C# compiler will give you a warning which indicates

that you should provide the keyword new to indicate this):

public class BabyAccount : CustomerAccount,IAccount {

 public new bool WithdrawFunds (decimal amount)

 {

 if (amount > 10)

 {

 return false ;

 }

 if (balance < amount)

 {

 return false ;

 }

 balance = balance - amount ;

 return true;

 }

}

The problem with this way of working is that you are unable to use base. This makes

it more difficult to pick up behaviours from parent classes.

Programmer’s Point:Don’t Replace Methods

I am very against replacing methods rather than overriding them. If you want to have a policy of

allowing programmers to make custom versions of classes in this way it is much more sensible to

make use of overriding since this allows a well managed way of using the method that you over-rid.

In fact, I’m wondering why I mentioned this at all..

Stopping Overriding

Overriding is very powerful. It means that a programmer can just change one tiny part

of a class and make a new one with all the behaviours of the parent. This goes well with

a design process which means that as you move down the “family tree” of classes you

get more and more specific.

Inheritance Bank Notes: Protect Your Code

C# Programming © Rob Miles 2009 111

However, overriding/replacing is not always desirable. Consider the GetBalance

method. This is never going to need a replacement. And yet a naughty programmer

could write their own and override or replace the one in the parent:

public new decimal GetBalance ()

{

 return 1000000;

}

This is the banking equivalent of the bottle of beer that is never empty. No matter how

much cash is drawn out, it always returns a balance value of a million pounds!

A naughty programmer could insert this into a class and give himself a nice spending

spree. What this means is that we need a way to mark some methods as not being able

to be overridden. C# does this by giving us a sealed keyword which means “You

can’t override this method any more”.

Unfortunately this is rather hard to use. The rules are that you can only seal an

overriding method (which means that we can’t seal the GetBalance virtual method

in the CustomerAccount class) and you can still replace a sealed method.

Another use for sealed, which has a bit more potential, is that you can mark a class

as sealed. This means that the class cannot be extended, i.e. it cannot be used as the

basis for another class.

public sealed class BabyAccount : CustomerAccount,IAccount {

}

The compiler will now stop the BabyAccount from being used as the basis of

another account.

Bank Notes: Protect Your Code

As far as the bank application is concerned, the customer will not have particularly

strong opinions on how you use things like sealed in your programs. But they will

want to have confidence in the code that you make. One of the unfortunate things about

this business is that you will have to allow for the fact that people who use your

components might not all be nice and trustworthy. This means that you should take

steps when you design the program to decide whether or not methods should be flagged

as virtual and also make sure that you seal things when you can do so.

For a programming course at this level it is probably a bit heavy handed of me to labour

this point just right now, and if it didn’t all make sense there is no particular need to

worry, just remember that when you create a program this is another risk that you will

have to consider.

Constructors and Hierarchies

A constructor is a method which gets control during the process of object creation. It is

used by a programmer to allow initial values to be set into an object:

robsAccount = new CustomerAccount("Rob Miles","Hull");

The code above will only work if the CustomerAccount class has a constructor

which accepts two strings, the name and the address of the new customer.

You might think that I could solve this by writing a constructor a bit like this:

Inheritance Abstract methods and classes

C# Programming © Rob Miles 2009 112

public CustomerAccount (string inName,decimal inBalance)

{

 name = inName;

 balance = inBalance;

}

But this class is an extension of the Account class. In other words, to make a

CustomerAccount I have to make an Account. And the account is the class which

will have a constructor which sets the name and the initial balance. In this situation the

constructor in the child class will have to call a particular constructor in the parent to

set that up before it is created. The keyword base is used to make a call to the parent

constructor. In other words, the proper version of the customer account constructor is as

follows:

public CustomerAccount (string inName,decimal inBalance) :

base (inName, inBalance)

{

}

The base keyword is used in the same way as this is used to call another constructor in

the same class. The constructor above assumes that the Account class which

CustomerAccount is a child of has a constructor which accepts two parameters, the first

a string and the second a decimal value.

Constructor Chaining

When considering constructors and class hierarchies you must therefore remember that

to create an instance of a child class an instance of the parent must first be created. This

means that a constructor in the parent must run before the constructor in the child. In

other words, to create a CustomerAccount you must first create an Account. The

result of this is that programmers must take care of the issue of constructor chaining.

They must make sure that at each level in the creation process a constructor is called to

set up the class at that level.

Programmer’s Point:Design your class construction process

The means by which your class instances are created is something you should design into the system

that you build. It is part of the overall architecture of the system that you are building. I think of

these things as a bit like the girders that you erect to hold the floors and roof of a large building.

They tell programmers who are going to build the components which are going to implement the

solution how to create those components. It is of course very important that you have these designs

written down and readily available to the development team.

Abstract methods and classes

At the moment we are using overriding to modify the behaviour of an existing parent

method. However, it is also possible to use overriding in a slightly different context. I

can use it to force a set of behaviours on items in a class hierarchy. If there are some

things that an account must do then we can make these abstract and then get the child

classes to actually provide the implementation.

For example, in the context of the bank application we might want to provide a method

which creates a warning letter to the customer that their account is overdrawn. This will

have to be different for each type of account (we don’t want to use the same language to

a baby account holder as we do for an older one). This means that at the time we create

the bank account system we know that we need this method, but we don’t know

precisely what it does in every situation.

Inheritance Abstract methods and classes

C# Programming © Rob Miles 2009 113

 We could just provide a “standard” method in the CustomerAccount class and

then rely on the programmers overriding this with a more specific message but we then

have no way of making sure that they really do provide the method.

C# provides a way of flagging a method as abstract. This means that the method

body is not provided in this class, but will be provided in a child class:

public abstract class Account

{

 public abstract string RudeLetterString();

}

The fact that my new Account class contains an abstract method means that the

class itself is abstract (and must be marked as such). It is not possible to make an

instance of an abstract class. If you think about it this is sensible. An instance of

Account would not know what to do it the RudeLetterString method was ever

called.

An abstract class can be thought of as a kind of template. If you want to make an

instance of a class based on an abstract parent you must provide implementations of all

the abstract methods given in the parent.

Abstract classes and interfaces

You might decide that an abstract class looks a lot like an interface. This is true, in that

an interface also provides a “shopping list” of methods which must be provided by a

class. However, abstract classes are different in that they can contain fully implemented

methods alongside the abstract ones. This can be useful because it means you don’t

have to repeatedly implement the same methods in each of the components that

implement a particular interface.

The problem is that you can only inherit from one parent, so you can only pick up the

behaviours of one class. If you want to implement interfaces as well, you may have to

repeat methods as well.

Perhaps at this point a more fully worked example might help.

If we consider our bank account problem we can identify two types of behaviour:

 those which every type of bank account must provide (for example

PayInFunds and GetBalance)

 those which each type of bank account must provide in a way specific to that

particular account type (for example WithdrawFunds and

RudeLetterString)

The trick is to take all the methods in the first category and put them inside the parent

class. The methods in the second category must be made abstract. This leads us to a

class design a bit like this:

Inheritance Abstract methods and classes

C# Programming © Rob Miles 2009 114

This code repays careful study. Note how I have moved all the things that all accounts

must do into the parent Account class. Then I have added customised methods into

the child classes where appropriate. Note also though that I have left the interface in

place. That is because; even though I now have this abstract structure I still want to

public interface IAccount

{

 void PayInFunds (decimal amount);

 bool WithdrawFunds (decimal amount);

 decimal GetBalance ();

 string RudeLetterString();

}

public abstract class Account : IAccount

{

 private decimal balance = 0;

 public abstract string RudeLetterString();

 public virtual bool WithdrawFunds (decimal amount)

 {

 if (balance < amount)

 {

 return false ;

 }

 balance = balance - amount ;

 return true;

 }

 public virtual decimal GetBalance ()

 {

 return balance;

 }

 public void PayInFunds (decimal amount)

 {

 balance = balance + amount ;

 }

}

public class CustomerAccount : Account

{

 public override string RudeLetterString()

 {

 return "You are overdrawn" ;

 }

}

public class BabyAccount : Account

{

 public override bool WithdrawFunds (decimal amount)

 {

 if (amount > 10)

 {

 return false ;

 }

 return base.WithdrawFunds(amount);

 }

 public override string RudeLetterString()

 {

 return "Tell daddy you are overdrawn";

 }

}

Inheritance Bank Notes: Designing with interface and abstract

C# Programming © Rob Miles 2009 115

think of the account objects in terms of their “accountness” rather than any particular

specific type.

References to abstract classes

References to abstract classes work just like references to interfaces. A reference to an

Account class can refer to any class which extends from that parent. This might seem

useful, as we can consider something as an “account” rather than a BabyAccount.

However, I much prefer it if you mange references to abstract things (like accounts) in

terms of their interface instead.

Bank Notes: Designing with interface and abstract

For the purpose of this part of the course you now have broad knowledge of all the

tools that can be used to design large software systems. If you have an understanding of

what an interface and abstract classes are intended to achieve this will stand you in very

good stead for your programming career. Broadly:

Interface: lets you identify a set of behaviours (i.e. methods) which a component can

be made to implement. Any component which implements the interface can be thought

of in terms of a reference of that interface type. A concrete example of this would be

something like IPrintHardCopy. Lots of items in my bank system will need to do

this and so we could put the behaviour details into the interface for them to implement

in their own way. Then our printer can just regard each of the instances that implement

this interface purely in this way. Interfaces let me describe a set of behaviours which a

component can implement. Once a component can implement an interface it can be

regarded purely in terms of a component with this ability. Objects can implement more

than one interface, allowing them to present different faces to the systems that use them.

Abstract: lets you create a parent class which holds template information for all the

classes which extend it. If you want to create a related set of items, for example bank

account, receipt, invoice, person then the best way to do this is to set up a parent class

which contains abstract and non-abstract methods. The child classes can make use of

the methods from the parent and override the ones that need to be provided differently

for that particular class.

One important consideration though, is that even if you make use of an abstract parent

class I reckon that you should still make use of interfaces to reference the accounts.

And the reason why goes like this:

If our bank takes over another bank and wants to share account information we might

need a way to use their accounts. If their accounts are software components too (and

they should be) then all we have to do is implement the required interfaces at each end

and then our systems understand each other. In other words the other bank must create

the methods in the IAccount interface, get their account objects (whatever they are

called) to implement the interface and, hey presto, I can now use their accounts.

This would be much more difficult if my entire system thought in terms of a parent

Account class – since their classes would not fit into this hierarchy at all.

Don’t Panic

This is all deep stuff. If you don’t get it now, don’t worry. These features of C# are tied

up with the process of software design which is a very complex business. The important

point to bear in mind is that the features are all provided so that you can solve one

problem:

Object Etiquette Objects and ToString

C# Programming © Rob Miles 2009 116

Create software which is packaged in secure,

interchangeable components.
Interfaces let me describe what each component can do. Class hierarchies let me re-use

code inside those components.

And that is it.

Object Etiquette

We have considered objects "in the large", in that we know how they can be used to

design and implement large software systems. What we need to do now is take a look at

some smaller, but very important, issues that relate to how we use objects in our

programs.

Objects and ToString

We have taken it as read that objects have a magical ability to print themselves out. If I

write the code:

int i = 99;

Console.WriteLine(i);

This will print out:

99

The integer somehow seems to know how to print itself out. Now it is time to find out

how this is achieved, and also how we can give our own objects the same magical

ability.

It turns out that this is all provided by the "objectness" of things in C#. We know that

an object can contain information and do things for us. (in fact we have seen that the

whole basis of building programs is to decide what the objects should do and then make

them do these things). We have also seen that you can extend a parent object to create a

child which has all the abilities of the parent, plus the new ones that we add. Now we

are going to see how these abilities of objects are used in making parts of the C#

implementation itself work.

The Object class

When you create a new class this is not actually created from nowhere. It is in fact a

child of the object class. In other words, if I write:

public class Account {

- this is equivalent to writing:

public class Account : object {

The object class is a part of C#, and everything is a child of the object class. This has

a couple of important ramifications:

1. Every object can do what an object can do.

2. A reference to an object type can refer to any class.

Object Etiquette Objects and ToString

C# Programming © Rob Miles 2009 117

For the purpose of this part of the notes, the first point is the one which has the most

importance here. It means that all classes that are made have a number of behaviours

that they inherit from their ultimate parent, the object. If you look inside the actual code

that makes an object work you will find a method called ToString. The object

implementation of ToString returns a string description of the type of that object.

The ToString method

The system knows that ToString exists for every object, and so if it ever needs the

string version of an object it will call this method on the object to get the text.

In other words:

object o = new object();

Console.WriteLine(o);

- would print out:

System.Object

You can call the method explicitly if you like:

Console.WriteLine(o.ToString());

- and the results would be exactly the same.

The nice thing about ToString is that it has been declared virtual. This means

that we can override it to make it behave how we would like:

class Account

{

 private string name;

 private decimal balance;

 public override string ToString()

 {

 return "Name: " + name + " balance: " + balance;

 }

 public Account (string inName, decimal inBalance)

 {

 name = inName;

 balance = inBalance;

 }

}

In the tiny Account class above I've overridden the ToString method so that it

prints out the name and balance value. This means that the code:

Account a = new Account("Rob", 25);

Console.WriteLine(a);

- would print out:

Name: Rob balance: 25

So, from the point of view of good etiquette, whenever you design a class you should

provide a ToString method which provides a text version of the content of that class.

Getting the string description of a parent object

If you want to get hold of a string description of the parent object, you can use the base

mechanism to do this. This is sometimes useful if you add some data to a child class

and want to print out the content of the parent first:

Object Etiquette Objects and testing for equals

C# Programming © Rob Miles 2009 118

public override string ToString()

{

 return base.ToString() + " Parent : " + parentName;

}

The method above is from a ChildAccount class. This class extends the

CustomerAccont and holds the name of the child's parent. The code above uses the

ToString method in the parent object and then tacks the name of the parent on the

end before returning it. The nice thing about this is that if the behaviour of the parent

class changes, i.e. new members are added or the format of the string changes, the

ChildAccount class does not have to change, since it will just make use of the

upgraded method.

Objects and testing for equals

We have seen that when object references are compared a test for equals does not mean

the same as it does for values. We know that objects are managed by named tags which

refer to unnamed items held in memory somewhere. When we perform an equals test

the system simply checks to see if both references refer to the same location.

To see how this might cause us problems we need to consider how we would implement

a graphical computer game (makes a change from the bank for a while). In the game the

various objects in it will be located at a particular place on the screen. We can express

this position as a coordinate or point, with an x value and a y value. We then might

want to test to see if two items have collided.

class Point

{

 public int x;

 public int y;

}

This is my point class. I can now create instances of Point and use them to manage

my game objects:

Point spaceshipPosition = new Point();

spaceshipPosition.x = 1;

spaceshipPosition.y = 2;

Point missilePosition = new Point();

missilePosition.x = 1;

missilePosition.y = 2;

if (spaceshipPosition == missilePosition)

{

 Console.WriteLine("Bang");

}

Note that I've made the x and y members of the Point class public. This is because

I'm not that concerned about protecting them, but I do want my program to run quickly.

The problem is that the above program code does not work. Even though I have put the

spaceship and the missile at the same place on the screen the word Bang is not printed.

This is because although the two Point objects hold the same data, they are not

located at the same address in memory, which means that the equals test will fail.

Adding an Equals method

The way that you solve this problem is to provide a method which can be used to

compare the two points and see if they refer to the same place. To do this we must

override the standard Equals behaviour and add one of our own:

Object Etiquette Objects and testing for equals

C# Programming © Rob Miles 2009 119

public override bool Equals(object obj)

{

 Point p = (Point) obj;

 if ((p.x == x) && (p.y == y))

 {

 return true;

 }

 else

 {

 return false;

 }

}

The Equals method is given a reference to the thing to be compared. Note that this

reference is supplied as a reference to an object. The first thing we need to do is create

a reference to a Point. We need to do this because we want to get hold of the x and y

values from a Point (we can't get them from an object).

The object is cast into a Point and then the x and y values are compared. If they are

both the same the method returns true to the caller. This means that I can write code

like:

if (missilePosition.Equals(spaceshipPosition))

{

 Console.WriteLine("Bang");

}

This test will work, because the Equals method actually compares the content of the

two points rather than just their references.

Note that I didn't actually need to override the Equals method, I could have written

one called TheSame which did the job. However, the Equals method is sometimes

used by C# library methods to see if two objects contain the same data and so

overriding Equals makes my class behave correctly as far as they are concerned.

Programmer’s Point:Make sure you use the right equals

As a programmer, I must remember that when I'm comparing objects to see if they contain the

same data I need to use the Equals method rather than the == operator. Some of the nastiest bugs

that I've had to fix have revolved around programmers who have forgotten which test to use. If

you are determined to get the right behaviour, C# provides a technology called "operator

overriding" where I can provide a new behaviour for the == operator. It is well worth investigating

this.

Objects and this

By now you should be used to the idea that we can use a reference to an object to get

hold of the members of that object. Consider:

public class Counter

{

 public int Data=0;

 public void Count ()

 {

 Data = Data + 1;

 }

}

The class above has a single data member and a single method member. The data is a

counter. Each time the Count method is called the counter is made one larger. I can

use the class as follows:

Object Etiquette Objects and testing for equals

C# Programming © Rob Miles 2009 120

Counter c = new Counter();

c.Count();

Console.WriteLine("Count : " + c.Data);

This calls the method and then prints out the data. We know that in this context the .

(dot) means "follow the reference to the object and then use this member of the class".

this as a reference to the current instance

I hate explaining this. I want to use the word this to mean this, but this also has a

special meaning within your C# programs. Perhaps the best way to get around the

problem is to remember that when I use the word this I mean "a reference to the

currently executing instance of a class". When a method in a class accesses a member

variable the compiler automatically puts a this. in front of each use of a member of

the class. In other words, the "proper" version of the Counter class is as follows:

public class Counter

{

 public int Data=0;

 public void Count ()

 {

 this.Data = this.Data + 1;

 }

}

We can add a this. if we like to make it explicit that we are using a member of a

class rather than a local variable.

Passing a reference to yourself to other classes

Another use for this is when a class needs to provide a reference to itself to another

class that wants to use it. It can simply pass this as a parameter to a method call.

x.AddItem(this);

I call the method AddItem on x to give it a reference to the currently executing

object. If this hurts your head, then don't worry about it for now.

Confusion with this

I reckon that using this is a good idea. It means that people reading my code can tell

instantly whether I am using a local variable or a member of the class. However it

might take a bit of getting used to. If I have a member of my class which contains

methods, and I want to use one of those methods, I end up writing code like this:

this.account.SetName("Rob");

This means "I have a member variable in this class called account. Call the

SetName method on that member to set the name to 'Rob'".

Bank Notes: Good Manners are a Good Idea

It is considered good manners to provide the Equals and ToString methods in the

classes that you create. These will allow your classes to fit in with others in the C#

system. It is also very useful to make appropriate use of this when writing methods in

classes. When you start to create your bank account management system you should

arrange a meeting of all the programmers involved and make them aware that you will

be insisting on good mannered development like this. In fact, for a professional

approach you should set out standards which establish which of these methods you are

The power of strings and chars String Manipulation

C# Programming © Rob Miles 2009 121

going to provide. You will expect all programmers to write to these standards if they

take part in the project.

Programmer’s Point:Always provide an equals behaviour

The customer for our bank account management program is very keen that every single bank

account that is created is unique. If the bank ever contains two identical accounts this would cause

serious problems. The fact that everything in the system is required to be unique might lead you to

think that there is no need to provide a way to compare two Account instances for equality. “If the

system will never contain two things that are the same, why should I waste time writing code to

compare them in this way?”.

However, there is a very good reason why you might find an equals behaviour very useful. When you

write the part of the program which stores data and brings it back again you will find it very useful

to have a way of testing that what comes back from the store is identical to what you put there. In

this situation an equals behaviour is important, and so I reckon you should always provide one.

The power of strings and chars

It is probably worth spending a few moments considering the string type in a bit more

detail. This is because it gives you a lot of nice extra features which will save you a lot

of work. These are exposed as methods which you can call on a string reference. The

methods will return a new string, transformed in the way that you ask. You can sort out

the case of the text, trim spaces off the start and end and extract sub-strings using these

methods.

String Manipulation

Strings are rather special. I regard them as a bit like bats. A bat can be regarded as

either an animal or a bird in many respects. A string can be regarded as either an object

(referred to by means of a reference) or a value (referred to as a value).

This hybrid behaviour is provided because it makes things easier for us programmers.

However it does mean that we have to regard strings as a bit special when you are

learning to program, because they seem to break some of the rules that we have learnt.

String Transformation

It is very important that you understand what happens when you transform a string. This

is because, although strings are objects, they don't actually behave like objects all the

time.

string s1="Rob";

string s2=s1;

s2 = "different";

Console.WriteLine(s1 + " " + s2);

If you think you know about objects and references, you should be expecting s1 to

change when s2 is changed. This does not happen though, because C# regards an

instance of a string type in a special way. It calls it immutable. This is because

programmers want strings to behave a bit like values in this respect.

The power of strings and chars String Manipulation

C# Programming © Rob Miles 2009 122

Immutable strings

The idea is that if you try to change a string, the C# system instead creates a new string

and makes the reference you are "changing" refer to the changed one. In other words,

when the system sees the line:

s2 = "different";

- it makes a new string which contains the text "different" and makes s2 refer to that.

The thing that s1 is referring to is unchanged. So, after the assignment s1 and s2 no

longer refer to the same object. This behaviour, never allowing a thing to be changed

by making a new one each time it is required, is how the system implements immutable.

You might ask the question: "Why go to all the trouble?" It might seem all this hassle

could be saved by just making strings into value types. Well, no. Consider the situation

where you are storing a large document in the memory of the computer. By using

references we only actually need one string instance with the word “the” in it. All the

occurrences in the text can just refer to that one instance. This saves memory and it also

makes searching for words much faster.

String Comparison

The special nature of strings also means that you can compare strings using equals and

get the behaviour you want:

if (s1 == s2)

{

 Console.WriteLine("The same");

}

If s1 and s2 were proper reference types this comparison would only work if they

referred to the same object. But in C# the comparison works if they contain the same

text. You can use an equals method if you prefer:

if (s1.Equals(s2))

{

 Console.WriteLine("Still the same");

}

String Editing

You can read individual characters from a string by indexing them as you would an

array:

char firstCh = name[0];

This would set the character variable firstCh to the first character in the string.

However, you can't change the characters:

name[0] = 'R';

- would cause a compilation error because strings are immutable.

You can pull a sequence of characters out of a string using the SubString method:

string s1="Rob";

s1=s1.Substring(1,2);

The first parameter is the starting position and the second is the number of characters to

be copied. This would leave the string "ob" in s1.(remember that strings are indexed

starting at location 0).

You can leave out the second parameter if you like, in which case all the characters up

to the end of the string are copied:

The power of strings and chars String Manipulation

C# Programming © Rob Miles 2009 123

string s1="Miles";

s1=s1.Substring(2);

- would leave "les" in s1.

String Length

All of the above operations will fail if you try to do something which takes you beyond

the length of the string. In this respect strings are just like arrays. It is also possible to

use the same methods on them to find out how long they are:

Console.WriteLine ("Length: " + s1.Length);

The length property gives the number of characters in the string.

Character case

Objects of type string can be asked to create new, modified, versions of themselves in

slightly different forms. You do this by calling methods on the reference to get the

result that you want:

s1=s1.ToUpper();

The ToUpper method returns a version of the string with all the letters converted to

UPPER CASE. No other characters in the string are changed. There is a corresponding

ToLower method as well.

Trimming and empty strings

Another useful method is Trim. This removes any leading or trailing spaces from the

string.

s1=s1.Trim();

This is useful if your users might have typed " Rob " rather than "Rob". If you don't

trim the text you will find equals tests for the name will fail. There are TrimStart

and TrimEnd methods to just take off leading or trailing spaces if that is what you

want. If you trim a string which contains only spaces you will end up with a string

which contains no characters (i.e. its length is zero).

Character Commands

The char class also exposes some very useful methods which can be used to check the

values of individual characters. These are static methods which are called on the

character class and can be used to test characters in a variety of ways:

char.IsDigit(ch) returns true if the character is a digit (0 to 9)

char.IsLetter(ch) returns true if the character is a letter (a to z or A

to Z)

char.IsLetterOrDigit(ch) returns true if the character is a letter or a digit

char.IsLower(ch) returns true if the character is a lower case letter

char.IsUpper(ch) returns true if the character is an upper case

letter

char.IsPunctuation(ch) returns true if the character is a punctuation

character

char.IsWhiteSpace(ch) returns true if the character is a space, tab or

newline

Properties Properties as class members

C# Programming © Rob Miles 2009 124

You can use these when you are looking through a string for a particular character.

String Twiddling with StringBuilder

If you really want to twiddle with the contents of your strings you will find the fact that

you can't assign to individual characters in the string a real pain. The reason you are

suffering is that strings are really design to hold strings, not provide a way that they can

be edited. For proper string editing C# provides a class called StringBuilder. It is

found in the System.Text namespace.

It works a lot like a string, but you can assign to characters and even replace one string

with another. It is also very easy to convert between StringBuilder instances and

strings. You should look this up if you have a need to do some proper editing.

Properties

Properties are a nice bit of sugar coating. They are a bit like the switch keyword,

which lets us select things easily. We don't need properties, but C# provides them

because they make programs slightly easier to write and simpler to read.

Properties as class members

A property is a member of a class that holds a value. We have seen that we can use a

member variable to do this kind of thing, but we need to make the member value

public. For example, the bank may ask us to keep track of staff members. One of the

items that they may want to hold is the age of a member of staff. I can do it like this:

public class StaffMember

{

 public int Age;

}

The class contains a public member. I can get hold of this member in the usual way:

StaffMember s = new StaffMember();

s.Age = 21;

I can access a public member of a class directly; just by giving the name of the member.

The problem is that we have already decided that this is a bad way to manage our

objects. There is nothing to stop things like:

s.Age = -100210232;

This is very naughty, but because the Age member is public we cannot stop it.

Creating Get and Set methods

To get control and do useful things we can create get and set methods which are

public. These provide access to the member in a managed way. We then make the

Age member private and nobody can tamper with it:

Properties Using Properties

C# Programming © Rob Miles 2009 125

public class StaffMember

{

 private int age;

 public int GetAge()

 {

 return this.age;

 }

 public void SetAge(int inAge)

 {

 if ((inAge > 0) && (inAge < 120))

 {

 this.age = inAge;

 }

 }

}

We now have complete control over our property, but we have had to write lots of extra

code. Programmer’s who want to work with the age value now have to call methods:

StaffMember s = new StaffMember();

s.SetAge(21);

Console.WriteLine ("Age is : " + s.GetAge());

Using Properties

Properties are a way of making the management of data like this slightly easier. An age

property for the StaffMember class would be created as follows:

public class StaffMember

{

 private int ageValue;

 public int Age

 {

 set

 {

 if ((value > 0) && (value < 120))

 {

 this.ageValue = value;

 }

 }

 get

 {

 return this.ageValue;

 }

 }

}

The age value has now been created as a property. Note how there are get and set parts

to the property. These equate directly to the bodies of the get and set methods that I

wrote earlier. The really nice thing about properties is that they are used just as the

class member was:

StaffMember s = new StaffMember();

s.Age = 21;

Console.WriteLine ("Age is : " + s.Age);

When the Age property is given a value the set code is run. The keyword value

means “the thing that is being assigned”. When the Age property is being read the get

code is run. This gives us all the advantages of the methods, but they are much easier to

use and create.

I can do other clever things too:

Properties Properties and interfaces

C# Programming © Rob Miles 2009 126

public int AgeInMonths

{

 get

 {

 return this.ageValue*12;

 }

}

This is a new property, called AgeInMonths. It can only be read, since it does not

provide a set behaviour. However, it returns the age in months, based on the same

source value as was used by the other property. This means that you can provide

several different ways of recovering the same value.

You can also provide read-only properties by leaving out the set behaviour. Write only

properties are also possible if you leave out the get.

Properties and interfaces

Interfaces are a way that you can bring together a set of behaviours. They are packaged

as a list of methods which a class must contain if it implements the interfaces. It is also

possible to add properties to interfaces. You do this by leaving out the statements which

are the body of the get and set behaviours:

interface IStaff

{

 int Age

 {

 get;

 set;

 }

}

This is an interface that specifies that classes which implement it must contain an Age

property with both get and set behaviours.

Property problems

Properties are really neat, and they are used throughout the classes in the .NET

libraries. But there are a few things that you need to be aware of when deciding whether

or not to use them:

Property Assignment Failure

We have seen that the set behaviour can reject values if it thinks they are out of range.

This is OK, but it has no way of telling the user of the property that this has happened.

With our Age property above the code:

s.Age = 121;

- would fail. However, the person performing the assignment would not be aware of

this, since there is no way that the property can return a value which indicates success

or failure. The only way that a property set method could do this would be to throw and

exception, which is not a good way to go on.

A SetAge method on the other hand could return a value which indicates whether or

not it worked:

Building a Bank Property problems

C# Programming © Rob Miles 2009 127

public bool SetAge(int inAge)

{

 if ((inAge > 0) && (inAge < 120))

 {

 this.age = inAge;

 return true;

 }

 return false;

}

A programmer setting the age value can now find out if the set worked or failed.

If there is a situation where a property assignment can fail I never expose that as a

property. I suppose that it would be possible to combine a set method and a get

property, but I reckon that would be madness.

Properties Run Code

When you assign a value to a property you are actually calling a method. Unfortunately

there is no way you can tell that from the code which does the assignment:

s.Age = 99;

This looks very innocent, but could result in a thousand lines of code running inside the

set property. It is possible to use this to advantage, in that an object can react to and

track property changes. But it can also be made very confusing.

Programmer’s Point:Don’t use new fangled stuff just because it is

there

Programmer’s love new shiny toys. They are very keen to use language features to show off.

Properties can be a bit like this. When considering properties versus get and set methods I am

rather a fan of the old fashioned get and set methods because you know where you are with these.

On the other hand I can see where properties might make life easier, if used in the correct way.

When you are deciding whether or not to use a language feature you need to ask yourself whether it

is the best way to do the job. If you are using a feature just because it is cool, you might not be

doing things the best way.

Building a Bank

We are now in a situation where we can create working bank accounts. We can use

interfaces to define the behaviour of a bank account component. This gives us a way of

creating new types of account as the bank business develops. What we now need is a

way of storing a large number of accounts. This container class will provide methods

which allow us to find a particular account based on the name of the holder. We can

express the behaviour that we need from our bank in terms of an interface:

interface IBank

{

 IAccount FindAccount (string name);

 bool StoreAccount (IAccount account);

}

A class which implements these methods can be used for the storage of accounts. I can

put an account into it and then get it back again:

Building a Bank Property problems

C# Programming © Rob Miles 2009 128

IBank friendlyBank = new ArrayBank (50);

IAccount account = new CustomerAccount("Rob", 0);

if (friendlyBank.StoreAccount(account)) {

 Console.WriteLine ("Account stored OK");

}

The code above creates a bank and then puts an account into it, printing out a message

if the storage worked.

Storing Accounts in an array

The class ArrayBank is a bank account storage system which works using arrays.

When you create an instance of an ArrayBank you tell it how many accounts you

want to store by means of the constructor. In the code above we are creating a bank

with enough room for references to 50 accounts. The constructor creates an array of the

appropriate size when it is called:

private IAccount [] accounts ;

public ArrayBank(int bankSize)

{

 accounts = new IAccount[bankSize];

}

Note that it is very important that you understand what has happened here. We have not

created any accounts at all. What we have created is an array of references. Each

reference in the array can refer to an object which implements the IAccount

interface. But at the moment none of the references refer anywhere, they are all set to

null. When we add an account to the bank we simply make one of the references refer

to that account instance. We never place an account "in" the array; instead we put a

reference to that account in the array.

The diagram shows the state of the accounts array after we have stored our first

account. The light coloured elements are set to null. The element at the start of the

array contains a reference to the account instance.

The method to add an account to our bank has to find the first empty location in the

array and set this to refer to the account that has been added:

Name : "Rob"
Balance : 0

accounts

Building a Bank Property problems

C# Programming © Rob Miles 2009 129

public bool StoreAccount (IAccount account)

{

 int position = 0;

 for (position = 0; position<accounts.Length; position++)

 {

 if (accounts[position] == null)

 {

 accounts[position] = account;

 return true;

 }

 }

 return false;

}

This method works through the array looking for an element containing null. If it finds

one it sets this to refer to the account it has been asked to store and then returns true.

If it does not find a null element before it reaches the end of the array it returns

false to indicate that the store has failed.

When we want to work on an account we must first find it. The bank interface provides

a method called FindAccount which will find the account which matches a

particular customer name:

IAccount fetchedAccount = arrayBank.FindAccount("Rob");

This will either return the account with the required name, or null if the account

cannot be found. In the array based implementation of the bank this is achieved by

means of a simple search:

public IAccount FindAccount (string name)

{

 int position=0 ;

 for (position=0 ; position<accounts.Length ; position++)

 {

 if (accounts[position] == null)

 {

 continue;

 }

 if (accounts[position].GetName() == name)

 {

 return accounts[position];

 }

 }

 return null;

}

This code works its way through the accounts array looking for an entry with a name

which matches the one being looked for. If it finds an element which contains a null

reference it skips past that onto the next one. If it reaches the end of the array without

finding a match it returns null, otherwise it returns a reference to the account that it

found.

Searching and Performance

The solution above will work fine, and could be used as the basis of a bank. However,

it becomes very slow as the size of the bank increases. Each time we add a new account

the searching gets slower as the FindAccount method must look through more and

more items to find that one. On a bank with only fifty accounts this is not a problem,

but if there are thousands of accounts this simple search will much to slow.

Building a Bank Property problems

C# Programming © Rob Miles 2009 130

Storing Accounts using a Hash Table

Fortunately for us we can use a device called a "hash table" which allows us to easily

find items based on a key This is much faster than a sequential search, since it uses a

technique which will take us straight to the required item.

The idea is that we do something mathematical (called "hashing) to the information in

the search property to generate a number which can then be used to identify the location

where the data is stored.

For example, we could take all the letters in the account name string, look up the ASCII

code for each letter and then add these values up. The name "Rob" could be converted

to 82+111+98 = 291. We could look in location 291 for our account.

Of course this hash code is not foolproof, the name "Rpa" would give the same total

(82+112+97) and refer to the same location. This is poetically referred to as a "hash

clash". We can do clever things with the way we combine the values to reduce the

chances of this happening, but we can't completely avoid clashes.

Clashes can be resolved by adding a test when we are storing an account. If we find the

location we would like to use is not null we simply work our way down looking for the

first free location on from that point.

When we want to find a given item we use the hash to take us to the starting position

for the search and then look for the one with the matching name.

In short, the hash function gives us a starting point for our search, rather than always

looking from the beginning of the array in our simple array based code above. This

greatly speeds up access to the data.

Using the C# Hashtable collection

Fortunately for us the designers of the C# have created a hash table class for us to use.

This will store items for us based on a particular object which is called the key. It turns

out to be very easy to create a bank storage mechanism based on this:

class HashBank : IBank

{

 Hashtable bankHashtable = new Hashtable();

 public IAccount FindAccount(string name)

 {

 return bankHashtable[name] as IAccount;

 }

 public bool StoreAccount(IAccount account)

 {

 bankHashtable.Add(account.GetName(), account);

 return true;

 }

}

The Hashtable class can be found in the System.Collections namespace. It

provides a method called Add which is given the value of the key and a reference to the

item to be stored on that hash code. It also allows you to use a reference to the key (in

this case the name) to locate an item:

return bankHashtable[name] as IAccount;

We have to use the "as" part of this coded as the collection will return a reference to an

object. We want to return a reference to an instance which implements the

IAccount interface. The as operator is a form of casting (where we force the

compiler to regard an item as being of a particular type). It is used in preference to the

code:

Generics and Collections The ArrayList class

C# Programming © Rob Miles 2009 131

return (IAccount) bankHashtable[name];

The as operator has the advantage that if bankHashtable[name] does not return

an account, or returns something of the wrong type, the as operator will generate a

null reference. Since this is just what the caller of our FindAccount method is

expecting this can be returned back directly. If a cast fails (i.e. at run time the bank hash

table returns the wrong thing) our program will fail with an exception.

It is interesting to note that because we have implemented our bank behaviour using an

interface, we can very easily change the way that the account storage part of the

program works without changing anything else.

Bank Notes: Key properties are important

The action that is being performed here is exactly the same as what happens when you

use your cash card to draw some money from the bank. The cash machine uses

information on the card as a key to find your account record so that it can check your

balance value and then update it when the money has been withdrawn.

In our simple bank we only have a single key, which is the name of the account holder.

In a real bank the key will be more complex, and there may well be more than one, so

that they can search for an account holder by name, address or account number

depending on the information they have available.

When gathering metadata about a system you will often need to consider which of the

properties of an item will be key fields.

Generics and Collections

Generics are very useful. This statement probably doesn't tell you much about them or

what they do, but it does indicate that they are very useful. They sound a bit scary;

telling people you learned about "generics" probably conjures up images of people with

white coats and test tubes, at least amongst those who can't spell very well. But I

digress. I think the root of Generics is probably "general", in that the idea of them is

that you specify a general purpose operation and then apply it in different contexts in a

way appropriate to each of them. If this sounds a bit like abstraction and inheritance

you are sort of on the right track. If it doesn't, then it might be worth re-reading those

bits of the book until they make sense.

Perhaps the best way to talk about generics is to see how they can help us solve a

problem for the bank. We have just seen that we can store Account references in an

Array. But we know that when an array is created the programmer must specify exactly

how many elements it contains. This leads to a "straw that breaks the camel's back"

problem, where adding the 10,001
st
 customer to the bank is not actually a cause for

celebration, because the array size was set at 10,000 and our program crashes.

One way to solve this problem is to use a really big array, but we aren't that keen on

that because it means that for smaller banks the program might be wasting a lot of

memory. Fortunately the C# libraries provide a number of solutions, starting with the

simple ArrayList.

The ArrayList class

The ArrayList is a cousin of the HashTable we have just seen, in that it lives in the

same Systems.Collections namespace. It lets us create something very useful,

Generics and Collections The ArrayList class

C# Programming © Rob Miles 2009 132

an array that can grow in size. We can always add new elements to the ArrayList,

and some very clever code in the library makes sure that this works.

Creating an ArrayList

It is very easy to create an ArrayList:

ArrayList store = new ArrayList();

Note that you don't have to set the size of the ArrayList, although there are

overloaded constructors that let you give this information and help the library code

along a bit:

ArrayList storeFifty = new ArrayList(50);

The ArrayList called storeFifty is initially able to store 50 references, but it

can hold more or less as required.

Adding Items to an ArrayList

Adding items to an ArrayList is also very easy. The class provides an Add method:

Account robsAccount = new Account ();

store.Add(robsAccount);

It is important to remember what is going on here. We are not putting an Account

into the arraylist; we are instead making one element of the arraylist refer to that

account. In this respect the word Add can be a bit misleading, in that what it actually

does is add a reference, not the thing itself.

Remember that it would be perfectly possible to have robsAccount in multiple

arraylists, just like your name can appear on multiple lists in the real world. It might be

that the bank has many lists of customers. It will have a list of all the customers, along

with a list of "special" customers and perhaps another list of those who owe it the most

money. So, an item "in" an arraylist is never actually in it, the list actually contains a

reference to that item. When an item is removed from an arraylist, it is not necessarily

destroyed; it is just no longer on that list.

Accessing Items in an ArrayList

Items in arraylists can be accessed in just the same way as array elements, but with a

tricky twist. It would be very nice if we could just get hold of the account from the

arraylist and use it.

Account a = store[0];

a.PayInFunds(50);

Unfortunately this won't work. If you write this code you will get a compilation error.

The reason for this is that an arraylist holds a list of Object references. If you think

about it, this is the only thing that it could hold. The designers of the ArrayList

class had no idea precisely what type of object a programmer will want to use it with

and so they had to use the Object reference.

You will no doubt remember from the discussion of object hierarchies that an Object

reference can refer to an instance of any class (since they are all derived from Object)

and so that is the only kind of reference that the arraylist works with.

This is not actually a huge problem, because a program can use a cast to change the

type of the item the arraylist returns:

Generics and Collections The ArrayList class

C# Programming © Rob Miles 2009 133

Account a = (Account) store[0];

a.PayInFunds(50);

This would get the element at the start of the arraylist, cast it into an Account class

and then pay fifty pounds into it.

A slightly larger problem is that an arraylist is not typesafe. This means that I can't be

sure that an arraylist you give me has nothing other than accounts in it:

KitchenSink k = new KitchenSink();

store.Add(k);

This puts a reference to a KitchenSink instance into our bank storage. This will

cause problems (and an exception) if we ever try to use it as an Account. To get a

properly typesafe Account storage we have to take a look at generics in detail a bit

later.

Removing Items from an ArrayList

It is not really possible to remove things from an array, but the arraylist class provides a

really useful Remove behaviour. This is given a reference to the thing to be removed:

store.Remove(robsAccount);

This removes the first occurrence of the reference robsAccount from the store

arraylist. If the store contained more than one reference to robsAccount then each

of them could be removed individually. Note that if the reference given is not actually

in the arraylist (i.e. if I ran the code above when store did not contain robsAccount)

this does not cause an error. If you remove an item the size of the arraylist is decreased.

Finding the size of an ArrayList

You can use the property Count to find out how many items there are in the list:

if (store.Count == 0)

{

 Console.WriteLine("The bank is empty");

}

Checking to see if an ArrayList contains an item

The final trick I'm going to mention (but there are lots more things an arraylist can do

for you) is the Contains method. This is simply a quick way of finding out whether

or not an arraylist contains a particular reference.

if (a.Contains(robsAccount))

{

 Console.WriteLine("Rob is in the bank");

}

The Contains method is given a reference to an object and returns true if the

arraylist contains that reference. You could of course write this behaviour yourself, but

having it built into the class makes it much easier.

ArrayLists and Arrays

Arraylists and arrays look a lot the same. They both let you store a large number of

items and you can use subscripts (the values in square brackets) to get hold of elements

from either. They also throw exceptions if you try to access elements that are not in the

array. If you wish you can use arraylists in place of arrays and have the benefits of

Generics and Collections The List class

C# Programming © Rob Miles 2009 134

storage that will grow and shrink as you need it, the only problem that you have is that

an arraylist will always hold references to objects, not any particular class. However,

this can be fixed when you move over to the List class.

The List class

The List class gives you everything that an arraylist gives you, with the advantage

that it is also typesafe. It is newer than the ArrayList class, being based on the

generic features provided by a more recent version of the C# language. To understand

how it works you have to understand a bit of generics.

Generics and Behaviours

If you think about it, the fundamental behaviours of arrays are always the same.

Whether you have an int, string, float or Account array the job that it does is

exactly the same. It holds a bunch of things in one place, and provides you with some

means to work with them. The abilities an array gives you with an array of integers are

exactly the same as those you have with an array of Accounts. And because each

array is declared as holding values of a particular type, C# can make sure that an array

always holds the appropriate type of values. The way that the system works, there is

just no way that you can take an Account reference and place it in element in an array

of integers. This is all to the good, but the ArrayList breaks things a bit.

The ArrayList was added afterwards, and because it is not quite as much a part of

the language as an array is, it has to use a compromise to allow it to hold references to

any kind of item in a program. It does this by using references to objects, but this can

lead to programs which are dangerous, in that there is nothing to stop references of any

type being added to an arraylist.

If you give me an array of Accounts I can be absolutely sure that everything in the

array is an account. However, if you give me an ArrayList there is no way I can be

sure that accounts are all it contains. It could contain a whole bunch of

KitchenSinks for all I know. And I only really find out when I start trying to

process elements as Accounts and my program starts to go wrong.

One way to solve this problem would have been to find a way of making the

ArrayList strongly typed, so that it because as much a part of C# as the array is.

However, that is not what the designers of C# did. Instead they introduced a new

language feature, generics.

Generics let me write code that deal with objects as "things of a particular type". It

doesn't matter what the thing I'm dealing with is, we can sort that out when we actually

want to work with something.

This sounds a bit confusing, how about an example.

If you wanted to share out marbles amongst you and your friends you could come up

with way of doing that. Something like: "Divide the number of marbles by the number

of friends and then distribute the remainder randomly". You now have a system that

lets you share marbles. However, you could also use it to share out sweets, cakes or

even cars. What the system works on is not particularly important. You could take your

universal sharing algorithm and use it to share most anything. The sharing algorithm

could have been invented without worrying about the type of the thing being shared; it

can be a general sharing behaviour that is then applied to the things we want to share. In

this respect, generics can be regarded as another form of abstraction.

Generics and Collections The Dictionary class

C# Programming © Rob Miles 2009 135

Generics and the List

In the case of generics, the behaviour you want is that of a list. What the list stores is

not important when making the list, just as long as you have a way of telling it what to

store. The C# features that provide generics add a few new notations to allow you to

express this. The List class lives in the System.Collections.Generic

namespace and works like this:

List<Account> accountList = new List<Account>();

The above statement creates a list called acountList which can hold references to

Accounts. The type between the < and > characters is how we tell the list the kind of

things it can store. We could create a List that can hold integers in a similar way:

List<int> scores = new List<int>();

Because we have told the compiler the type of things the list can hold it can perform

type validation and make sure that nothing bad happens when the list is used:

KitchenSink k = new KitchenSink();

accountList.Add(k);

The above statements would cause a compilation error, since the acountList

variable is declared as holding a list of Account references, and will not accept the

kitchen sink.

Since the compiler knows that AccountList holds Account references, this means

that you can write code like this:

accountList[0].PayInFunds(50);

There is no need to cast the item in the list as the type has already been established.

You can do everything with a List (Add, Count, Remove) that you can with an

ArrayList, which makes them the perfect way to store a large number of items of a

particular type.

The Dictionary class

Just as ArrayList has a more powerful, generically enhanced, cousin called List,

so the HashTable has a more powerful cousin called Dictionary. This allows the

key to your hashtable, and the items it stores, to be made typesafe. For example, we

might want to use the name of an account holder as a way of locating a particular

account. In other words, we have a string as the key and an Account reference as the

value. We can create a dictionary to hold these key/value pairs as follows:

Dictionary<string,Account> accountDictionary =

 new Dictionary<string,Account>();

We can now add items into our dictionary:

accountDictionary.Add("Rob", robsAccount);

This looks just like the way the HashTable was used (and it is). However, using a

Dictionary has the advantage that we can only add Account values which are

located by means of a string. In other words statements like this would be rejected.

KitchenSink k = new KitchenSink();

accountDictionary.Add("Glug", k);

A further advantage is that we do not need to cast the results:

d["Rob"].PayInFunds(50);

This would find the element with the hash key "Rob" and then pay fifty pounds into it.

The only problem with this use of a dictionary is that if there is no element with the key

Storing Business Objects Writing Generic Code

C# Programming © Rob Miles 2009 136

"Rob" the attempt to find one will result in a KeyNotFoundException being

thrown. You can get around this by asking the dictionary if it contains a particular key:

if (d.ContainsKey("Rob")) {

 Console.WriteLine("Rob is in the bank");

}

The Dictionary class is simply wonderful for storing keys and values in a typesafe

manner, and I recommend it strongly to you.

Writing Generic Code

The List and Dictionary classes were of course written in C# and make use of the

generic features of the language. How these features are used to create generic classes

is a bit beyond the scope of this text, but you are strongly advised to find out more

about generics as it can make writing code, particularly library routines, a lot easier.

Programmer’s Point:Use Dictionary and List

You don't really have to know a lot about generics to be able to spot just how useful these two

things are. Every time you need to hold a bunch of things, make a List. If you want to be able to find

things on the basis of a key, use a Dictionary. Don't have any concerns about performance. The

programmers who wrote these things are very clever folks .

Storing Business Objects

For our bank to really work we have to have a way of storing the bank accounts and

bringing them back again. If we want to our program to be able to process a large

number of accounts we know that we have to create an array to manage this. This

means that our data storage requirements are that we should load all the accounts into

memory when the program starts, and then save them when the program completes.

To start with, we'll consider how we save one account. Then we can move on to

consider the code which will save a large number of them. The account that we are

going to work with only has two members but the ideas we are exploring can be

extended to handle classes containing much larger amounts of data. We can express the

required account bahviour in terms of the following interface:

public interface IAccount

{

 void PayInFunds (decimal amount);

 bool WithdrawFunds (decimal amount);

 decimal GetBalance ();

 string GetName();

}

All the accounts in the bank are going to be managed in terms of objects which

implement this interface to manage the balance and read the name of the account

owner.

W can create a class called CustomerAccount which implements the interface and

contains the required methods. It also has a constructor which allows the initial name

and balance values to be set when the account is created.

Storing Business Objects Saving an Account

C# Programming © Rob Miles 2009 137

public class CustomerAccount : IAccount

{

 public CustomerAccount(

 string newName,

 decimal initialBalance)

 {

 name = newName;

 balance = initialBalance;

 }

 private decimal balance = 0;

 private string name;

 public virtual bool WithdrawFunds (decimal amount)

 {

 if (balance < amount)

 {

 return false;

 }

 balance = balance - amount ;

 return true;

 }

 public void PayInFunds (decimal amount)

 {

 balance = balance + amount ;

 }

 public decimal GetBalance ()

 {

 return balance;

 }

 public string GetName()

 {

 return name;

 }

}

Note that this version of the class does not perform any error checking of the input

values, so it is not what I would call "production" code, but it is just here to illustrate

how the data in the class can be saved and restored.

Saving an Account

The best way to make achieve the saving behaviour is to make an account responsible

for saving itself. In fact, if you think about it, this is the only way that we can save an

account, since any save mechanism would need to save data in the account which is

private and therefore only visible to methods inside the class.

We can add a Save method to our CustomerAccount class:

Storing Business Objects Loading an Account

C# Programming © Rob Miles 2009 138

public bool Save (string filename)

{

 try

 {

 System.IO.TextWriter textOut =

 new System.IO.StreamWriter(filename);

 textOut.WriteLine(name);

 textOut.WriteLine(balance);

 textOut.Close();

 }

 catch

 {

 return false;

 }

 return true;

}

This method is given the name of the file that the account is to be stored int. It writes

out the name of the customer and the balance of the account..So I could do things like:

if (Rob.Save ("outputFile.txt")) {

 Console.WriteLine ("Saved OK");

}

This would ask the account referred to by Rob to save itself in a file called

"outputFile.txt". Note that I have written the code so that if the file output fails the

method will return false, to indicate that the save was not successful.

Loading an Account

Loading is slightly trickier than saving. When we save an account we have an account

which we want to save. When we load there will not be an account instance to load

from. A way to get around this is to write a static method which will create an account

given a filename:

public static CustomerAccount Load(string filename)

{

 CustomerAccount result = null;

 System.IO.TextReader textIn = null;

 try

 {

 textIn = new System.IO.StreamReader(filename);

 string nameText = textIn.ReadLine();

 string balanceText = textIn.ReadLine();

 decimal balance = decimal.Parse(balanceText);

 result = new CustomerAccount(nameText,balance);

 }

 catch {

 return null;

 }

 finally

 {

 if (textIn != null) textIn.Close() ;

 }

 return result;

}

This method opens a file, fetches the balance value and then creates a new

CustomerAccount with the balance value and name.

The Load method above takes great pains to ensure that if anything bad happens it

does a number of things:

1. It does not throw any exceptions which the caller must catch.

2. It returns null to indicate that the load failed if anything bad happens.

Storing Business Objects Multiple Accounts

C# Programming © Rob Miles 2009 139

3. It makes sure that the file it opens is always closed.

This is what I would call a "professional" level of quality, and is something you should

aim for when writing code you are going to sell.

We can use this as follows:

test = CustomerAccount.Load("test.txt");

This kind of method is sometimes called a “factory” method, in that it creates an

instance of a class for us. If the factory fails (because the file cannot be found or does

not contain valid content) it will return a null result, which we can test for:

if (test == null)

{

 Console.WriteLine("Loaded failed");

}

Programmer’s Point:There is only so much you can do

Note that if an incompetent programmer used my Load method above they could forget to test the

result that it returns and then their program would follow a null reference if the customer is not

found. This means that their program will fail in this situation. And they will probably try and blame

me for the problem (which would be very unfair).

The way around this is to make sure that you document the null return behaviour in big letters so

that users are very aware of how the method behaves. You can also get code analysis tools which

are bit like "compilers with attitude" (a good one is called FxCop). These scan programs for

situations where the results of methods are ignored and flag these up as potential errors. At the

end of the day though there is not a great deal you can do if idiots use your software, you just have

to make sure that, whatever happens, your part doesn’t break.

Multiple Accounts

The above code lets us store and load single accounts. However, at the moment we can

only store one account in a file. We could create a new file for each account, but this

would be confusing and inefficient, with large numbers of file open and close actions

being required (bear in mind that our bank may contain thousands of accounts).

Using streams

A better solution is to give the file save method a stream to save itself, rather than a

filename. A stream is the thing that the C# library creates when we open a connection

to a file:

System.IO.TextWriter textOut =

 new System.IO.StreamWriter("Test.txt");

The reference textOut refers to a stream which is connected to the file Test.txt. We

can create a save method which accepts the stream reference as a parameter instead of a

filename:

public void Save(System.IO.TextWriter textOut)

{

 textOut.WriteLine(name);

 textOut.WriteLine(balance);

}

This save method can be called from our original file save method:

Storing Business Objects Multiple Accounts

C# Programming © Rob Miles 2009 140

public bool Save (string filename)

{

 System.IO.TextWriter textOut = null;

 try

 {

 textOut = new System.IO.StreamWriter(filename);

 Save(textOut);

 }

 catch

 {

 return false;

 }

 finally

 {

 if (textOut != null)

 {

 textOut.Close();

 }

 }

 return true;

}

This method creates a stream and then passes it to the save method to save the item.

Note that this is an example of overloading in that we have two methods which share

the same name.

The load method for our bank account can be replaced by one which works in a similar

way.

public static CustomerAccount Load(

 System.IO.TextReader textIn)

{

 CustomerAccount result = null;

 try

 {

 string name = textIn.ReadLine();

 string balanceText = textIn.ReadLine();

 decimal balance = decimal.Parse(balanceText);

 result = new CustomerAccount(name, balance);

 }

 catch

 {

 return null;

 }

 return result;

}

This method is supplied with a text stream. It reads the name and the balance from this

stream and creates a new CustomerAccount based on this data.

Programmer’s Point:Streams are wonderful

Using streams is a very good idea. The C# input/output system lets us connect streams to all

manner of things, not just files on a disk. For example, you can create a stream which is connected

to a network port. This means that if you make your business objects save and load themselves using

streams they can then be sent over network connections with no extra work from you.

Saving and loading bank accounts

Now that we have a way of saving multiple accounts to a single stream we can write a

save method for the bank. This will open a stream and save all the accounts to it:

Storing Business Objects Handling different kinds of accounts

C# Programming © Rob Miles 2009 141

public void Save(System.IO.TextWriter textOut)

{

 textOut.WriteLine(bankHashtable.Count);

 foreach (CustomerAccount account in bankHashtable.Values)

 {

 account.Save(textOut);

 }

}

This is the Save method which would be added to our Hashtable based bank. It gets

each account out of the hash table and saves it in the given stream. Note that we are

using a new C# loop construction here, foreach. This is very useful when dealing

with collections of data. It works its way through a collection, in this case the Values

property of the bankHashtable, and supplies each item in turn.

Note that before it writes anything it writes out the number of customers in the bank.

This can be obtained via the Count property of the Hashtable. We do this is so that

when the bank is read back in the load method knows how many accounts are required.

We could just write out the data and then let the load method stop when it reaches the

end of the file, but this would not allow us to detect if the file had been shortened.

The Load method for the entire bank is as follows:

public static HashBank Load(System.IO.TextReader textIn)

{

 HashBank result = new HashBank();

 string countString = textIn.ReadLine();

 int count = int.Parse(countString);

 for (int i = 0; i < count; i++)

 {

 CustomerAccount account = CustomerAccount.Load(textIn);

 result.bankHashtable.Add(account.GetName(), account);

 }

 return result;

}

This reads the size of the bank and then reads each of the accounts in turn and adds it to

the hash table. Note that this load method does not handle errors. A production version

of the program would check that each account was loaded correctly before adding it to

the hash table.

Bank Notes: Large Scale Data Storage

What we have done is created a way that we can store a large number of bank account

values in a single file. We have done this without sacrificing any cohesion, in that only

the CurrentAccount class is responsible for the content. We have also been very

careful to make sure that whenever we save and load data we manage the way that this

process can fail.

Handling different kinds of accounts

The code above will work correctly if all we want to save and load are accounts of a

particular type, in that everything is written in terms of the CurrentAccount class.

However, we have seen that our customer needs the program to be able to handle many

different kinds of account.

Health Warning

This is complicated stuff. I don't expect you to understand this at first reading. The

reason that it is here is for completeness. Having told you all about class hierarchies

Storing Business Objects Handling different kinds of accounts

C# Programming © Rob Miles 2009 142

and how useful it is to be able to base a new class on an existing one (as we did with

BabyAccount) it would be most unfair of me to leave you guessing as to how these

things can be stored and retrieved. This material is provided to give you an idea of how

you really could make a working bank, but it assumes a very good understanding of

class hierarchies, method overriding/overloading and constructor chaining.

The good news is that when you do understand this stuff you really can call yourself a

fully fledged C# programmer.

Banks and Flexibility

We know that when our system is actually used in a bank there will be a range of

different kinds of account class, some of which will be based on others. As an example,

we have previously discussed the BabyAccount, a special account for young people

which limits the amount that can be withdrawn to no more than 10 pounds. The

customer has also asked that the BabyAccount class contains the name of the

"parent" account holder. We could implement such behaviour by creating an account

which extends the CustomerAccount class and adds the required behaviours and

properties:

public class BabyAccount : CustomerAccount

{

 private string parentName;

 public string GetParentName()

 {

 return parentName;

 }

 public override bool WithdrawFunds(decimal amount)

 {

 if (amount > 10)

 {

 return false;

 }

 return base.WithdrawFunds(amount);

 }

 public BabyAccount(

 string newName,

 decimal initialBalance,

 string inParentName)

 : base(newName, initialBalance)

 {

 parentName = inParentName;

 }

}

This is a complete BabyAccount implementation. It contains an additional property,

parentName, and overrides the WithdrawFunds method to provide the new

behaviour. Note that I have created a constructor which is supplied with the name of the

account holder, the starting balance and the name of the parent. This makes use of the

constructor in the parent to set the balance and name, and then sets the parent name. I

can create a BabyAccount as follows:

BabyAccount babyJane = new BabyAccount ("Jane", 20, "John");

This would create a new BabyAccount instance and set the reference babyJane to

refer to it.

Storing Business Objects Handling different kinds of accounts

C# Programming © Rob Miles 2009 143

Saving a child class

When we want to save a BabyAccount we also need to save the information from the

parent class. This turns out to be very easy, as long as we use the save method which

sends the information to a stream:

public override void Save(System.IO.TextWriter textOut)

{

 base.Save(textOut);

 textOut.WriteLine(parentName);

}

This method overrides the Save method in the parent CustomerAccount.

However, it first calls the overridden method in the parent to save the

CustomerAccount data. Then it performs the save behaviour required by the

BabyAccount class. This is very good design, as it means that if the data content and

save behaviour of the parent class changes we don't need to change the behaviour of the

child.

Loading a child class

We could create a static load method for the BabyAccount which reads in the

information and constructs a new BabyAccount:

public static BabyAccount Load(

 System.IO.TextReader textIn)

{

 BabyAccount result = null;

 try

 {

 string name = textIn.ReadLine();

 string balanceText = textIn.ReadLine();

 decimal balance = decimal.Parse(balanceText);

 string parent = textIn.ReadLine();

 result = new BabyAccount (name, balance, parent);

 }

 catch

 {

 return null;

 }

 return result;

}

However, I'm not particularly keen on this approach. This method breaks one of the

rules of good design, in that we now have a dependency between the two classes which

means that when I change the CustomerAccount class (perhaps to add a new field

called customerPIN) I also have to update the Load method in the BabyAccount

class to make sure that this extra data is loaded. If I forget to do this the program will

compile, but when it runs it will not work correctly.

What we really want to do is make the CustomerAccount responsible for loading

its data and the BabyAccount just look after its content; in a similar way to the way

the save method uses the base keyword to save the parent object.

The way to do this is to go back to the construction process. We know that a

constructor is a method which gets control when an instance of a class is being created.

A constructor can be used to set up the data in the instance, and it can be passed

information to allow it to do this. In the code above there is a constructor for the

BabyAccount class which accepts the three data items that the BabyAccount

holds and then sets the instance up with these values.

What we do is create constructors for the CustomerAccount and BabyAccount

classes which read their information from a stream that is supplied to them:

Storing Business Objects Handling different kinds of accounts

C# Programming © Rob Miles 2009 144

public CustomerAccount(System.IO.TextReader textIn)

{

 name = textIn.ReadLine();

 string balanceText = textIn.ReadLine();

 balance = decimal.Parse(balanceText);

}

This constructor sets up the new CustomerAccount instance by reading the values

from the stream that is supplied with. I can therefore write code like this:

System.IO.TextReader textIn =
 new System.IO.StreamReader(filename);

result = new CustomerAccount(textIn);

textIn.Close();

This creates a new CustomerAccount from the stream. Now I can create a

constructor for the BabyAccount which uses the constructor of the parent class:

public BabyAccount(System.IO.TextReader textIn) :

 base (textIn)

{

 parentName = textIn.ReadLine();

}

This removes the dependency relationship completely. If the behaviour of the

CustomerAccount constructor changes we do not have to change the

BabyAccount at all.

Note that these constructors do not do any error checking, they just throw exceptions if

something goes wrong. Bearing in mind that the only way that a constructor can fail is

to throw an exception anyway, this is reasonable behaviour.

Interfaces and the save operation

When we started this account development we set out an interface which describes all

the things which an instance of an account should be able to do. At the start this did not

include the save behaviours, but it could be updated to include them:

public interface IAccount

{

 void PayInFunds (decimal amount);

 bool WithdrawFunds (decimal amount);

 decimal GetBalance ();

 string GetName();

 bool Save(string filename);

 void Save(System.IO.TextWriter textOut);

}

We can now ask any item which implements the IAccount interface to save itself to

either a file or a stream. This is very useful when we store our collection of accounts,

since the account container will not have to behave differently depending on what kind

of account it is saving, it just has to call the save method for the particular instance.

This is a good idea.

Loading and factories

When it comes to loading our classes back, things get a little trickier. You might think it

would be sensible to add load methods to the IAccount interface, so that we can ask

instances of a particular kind of account to load themselves. However, there is a

problem here, in that when we are loading the accounts we don't actually have an

instance to call any methods on. Also, bearing mind we are reading from a stream of

data, we don't actually know what kind of item we are loading.

Storing Business Objects Handling different kinds of accounts

C# Programming © Rob Miles 2009 145

The solution to this problem is to identify the type of each instance in the steam when

we save the classes. The save method for our bank could look like this:

public void Save(System.IO.TextWriter textOut)

{

 textOut.WriteLine(bankHashtable.Count);

 foreach (CustomerAccount account in bankHashtable.Values)

 {

 textOut.WriteLine(account.GetType().Name);

 account.Save(textOut);

 }

}

This looks very like our original method, except that it has an additional line, which has

been highlighted. This writes out the name of the class. It makes use of the method

GetType(), which can be called on an instance of a class to get the type of that class.

Having got the type we can then get the Name property of this type and print that. In

other words, if the account is of type CustomerAccount the program will output:

CustomerAccount

Rob

100

The output now contains the name of the type of each class that has been written. This

means that when the stream is read back in this information can be used to cause the

correct type of class to be created. The neatest way to do this is to create a factory

which will produce instances of the required class:

class AccountFactory

{

 public static IAccount MakeAccount(

 string name, System.IO.TextReader textIn)

 {

 switch (name)

 {

 case "CustomerAccount":

 return new CustomerAccount(textIn);

 case "BabyAccount":

 return new BabyAccount(textIn);

 default:

 return null;

 }

 }

}

This class only contains a single method, which is static. The method is given two

parameters, the name of the class to be created and a stream to read from. It uses the

name to decide which item to make, creates one, and then returns that to the caller. If

the name is not recognized it returns null. The bank load method can use this factory

to create instances of accounts as they are loaded:

Business Objects and Editing Handling different kinds of accounts

C# Programming © Rob Miles 2009 146

public static HashBank Load(System.IO.TextReader textIn)

{

 HashBank result = new HashBank();

 string countString = textIn.ReadLine();

 int count = int.Parse(countString);

 for (int i = 0; i < count; i++)

 {

 string className = textIn.ReadLine();

 IAccount account =

 AccountFactory.MakeAccount(className, textIn);

 result.bankHashtable.Add(account.GetName(), account);

 }

 return result;

}

Again, this looks very like our original load method, except that it uses the factory to

make account instances once it has read the name of the class from the stream.

Factory Dependencies

Note that we now have a genuine dependency between our system and the factory class.

If we ever add a new type of account we need to update the behavioru of the factory so

that it contains a case to deal with the new account type. There is in fact a way of

removing the need to do this. It involves writing code which will search for C# classes

which implement particular interfaces and creating them automatically. However this

kind of stuff is beyond the scope of this text.

Bank Notes: Messy Code

You might think that the solutions above are rather messy. The way that we manage the

saving of items (by using a method in the class) loading (by using a constructor) is not

symmetrical. However, there is no dishonour in this way of working. When you want to

move from objects to storage and back you will find that you hit these issues and this

solution is as good as any I've found.

Business Objects and Editing

We have seen how to design a class which can be used to hold information about the

customers in our bank. We now also know how to save the information in a class

instance, and also perform this for a large number of items of a range of different types.

Now we need to consider how we can make our account management system genuinely

useful, by providing a user interface which lets people interact with our business objects

to run the bank.

Programmer’s Point:Production Code

From now on all the code examples are going to be given in the context of production code. This is

code which I would be happy to have supplied in a product. This means that I will be considering

what things you should look at when you are writing code for real customers. This might make the

examples a bit more complex that you might like, but I reckon this is worth doing since it is

important you start to understand that what you are writing now, and the problems you are

grappling with, are just those that "real" programmers are up against.

Business Objects and Editing The role of the Business Object

C# Programming © Rob Miles 2009 147

The role of the Business Object

We have taken a very strict line in our banking system to stop any of the bank account

components from actually talking to the user. This is because classes like

CustomerAccount are what is called business objects. It is not their job to talk to

users; they are strictly concerned with keeping track of the information in the bank

account of the customer. The job of the business object is to make sure that the data

that it holds is always correct. The editing behaviours should make use of the methods

that the business object exposes.

Managing a bank account name

As an example, consider the name of the bank account holder. It is important that this is

always stored safely but people may want to change their name from time to time. This

means that the business object must provide a way that the name can be changed.

However, there is more to it than just changing one string for another. The new name

must be a valid one. This means that the account must be able to reject names it doesn't

like. If it is going to reject names it would be very useful to the user if they could be

told why a given name was not valid, so the validation process should provide feedback

as to why it did not work.

A good software engineer would provide something like this:

private string name;

public string GetName()

{

 return this.name;

}

public static string ValidateName (string name)

{

 if (name == null) {

 return "Name parameter null";

 }

 string trimmedName = name.Trim();

 if (trimmedName.Length == 0)

 {

 return "No text in the name";

 }

 return "";

}

public bool SetName (string inName)

{

 string reply ;

 reply = ValidateName(inName);

 if (reply.Length > 0)

 {

 return false;

 }

 this.name = inName.Trim();

 return true;

}

The name is stored as a private member of the account class. The programmer has

provided three methods which let the users of my Account class deal with names.

There is a method to get the name, another to set it and another to validate it. The

validate method is called by the set method so that my business object makes sure that

an account never has an invalid name. The validate method will reject a name string

which is empty, or just contains spaces. It trims off all the spaces before and after the

Business Objects and Editing The role of the Business Object

C# Programming © Rob Miles 2009 148

name text and then checks to see if the length of the resulting string is empty. If it is, the

string is rejected.

I provide the validate method so that users of my class can check their names to make

sure that they are valid. This does not involve me in much extra work, since I also use

the method myself when I validate the name. The validate method returns a string

which gives an error message if the string is rejected. There may be several reasons

why a name is not valid, at the moment I've just given two. The reasons why a name is

invalid are of course part of the metadata for the project. I’ve also made this method

static so that names can be validated without needing to have an actual instance of

the account.

Testing Name Handling

Of course, once we have these methods, the natural thing to do is create tests for them:

string reply;

reply = CustomerAccount.ValidateName(null);

if (reply != "Name parameter null")

{

 Console.WriteLine("Null name test failed");

}

reply = CustomerAccount.ValidateName("");

if (reply != "No text in the name")

{

 Console.WriteLine("Empty name test failed");

}

reply = CustomerAccount.ValidateName(" ");

if (reply != "No text in the name")

{

 Console.WriteLine("Blank string name test failed");

}

CustomerAccount a = new CustomerAccount("Rob", 50);

if (!a.SetName("Jim"))

{

 Console.WriteLine("Jim SetName failed");

}

if (a.GetName() != "Jim") {

 Console.WriteLine("Jim GetName failed");

}

if (!a.SetName(" Pete "))

{

 Console.WriteLine("Pete trim SetName failed");

}

if (a.GetName() != "Pete")

{

 Console.WriteLine("Pete GetName failed");

}

These are all the tests I could think of. First I test ValidateName to make sure that it

rejects both kinds of empty string. Then I make sure that I can set the name on an

account. Finally I check that the space trimming for the names works correctly.

Business Objects and Editing The role of the Business Object

C# Programming © Rob Miles 2009 149

Programmer’s Point:Use Numbers Not Messages

There is one issue which I have not addressed in my sample programs which stops them from being

completely perfect. And that is the matter of error handling. At the moment the errors supplied by

my validation methods are strings. In a genuine production environment the errors would be numeric

values. This is because they are much easier to compare in tests and it also means that my program

could be made to work in a foreign language very easily. All I would need is a lookup table to convert

the message number to an appropriate string in the currently active language. You should consider

issues like this as part of the metadata in your project. The fact that the system must work in

France and Germany is something you need to be aware of right at the start.

Editing the Name

We now have a business object that provides methods which let us edit the name value.

I can now write code to edit this property:

while (true)

{

 Console.Write ("Enter new name : ") ;

 newName = Console.ReadLine();

 string reply;

 reply = account.ValidateName(newName);

 if (reply.Length == 0)

 {

 break;

 }

 Console.WriteLine("Invalid name : " + reply);

}

account.SetName(newName);

This code will perform the name editing for an account instance referred to by

account. It will read a new name in. If the name is valid the loop is broken and the

name is set. If the name is not valid the message is printed and the loop repeats. This is

not the most elegant solution, but it does keep the user informed of what it is doing and

it does work. Now that we have our edit code we need to put it somewhere.

Creating an Editor class

The best way to do this is to create a class which has the job of doing the editing. This

class will work on a particular account that needs to be edited. There will be a

dependency between the editor class and the account class, in that if the account class

changes the editor may need to be updated, but this is something we will just have to

live with.

When I want to edit an account I create an editor instance and pass it a reference to the

account instance:

Business Objects and Editing The role of the Business Object

C# Programming © Rob Miles 2009 150

This is my account editor class. At the moment it can only edit the name, but I will add

other edit methods later. The class keeps track of the account it is editing, I pass it a

reference to this account when I construct it. I would use the name editor as follows:

CustomerAccount a = new CustomerAccount("Rob", 50);

AccountEditTextUI edit = new AccountEditTextUI(a);

edit.EditName();

This code creates an instance of a customer account. It then creates an editor object and

asks it to edit the name of that account.

Note that the editor class is passed a reference to the IAccount interface, not a

references to the account class. This means that anything which behaves like an account

can be edited using this class. Note also that the editor remembers the account class that

is being edited so that when I call EditName it can work on that reference.

Programmer’s Point:Get used to passing references around

It is important that you get used to the idea of passing references between methods. If I want to

"give" a class something to work on I will do this by calling a method in that class and passing the

reference as a parameter to this method. In the case of the above code the method that I am

calling is actually the constructor, but the principle remains the same.

public class AccountEditTextUI

{

 private IAccount account;

 public AccountEditTextUI(Account inAccount)

 {

 this.account = inAccount;

 }

 public void EditName ()

 {

 string newName;

 Console.WriteLine("Name Edit");

 while (true)

 {

 Console.Write ("Enter new name : ") ;

 newName = Console.ReadLine();

 string reply;

 reply = this.account.ValidateName(newName);

 if (reply.Length == 0)

 {

 break;

 }

 Console.WriteLine("Invalid name : " + reply);

 }

 this.account.SetName(newName);

 }

}

Business Objects and Editing A Text Based Edit System

C# Programming © Rob Miles 2009 151

A Text Based Edit System

We now have a single method in our editor class which can be used to edit the name of

a bank account. What we really want is a menu system which takes a command from

the user and performs that function:

Editing account for Pete

 Enter name to edit name

 Enter pay to pay in funds

 Enter draw to draw out funds

 Enter exit to exit program

Enter command :

The user types in the name of the command that is required and then the program

selects that function. My edit class contains a method which does this:

This is my edit method which repeatedly reads commands and dispatches them to the

appropriate method. I've extended the account class to manage the account balance and

added edit methods which pay in funds and withdraw them. Note that I trim the

command string and convert it to lower case before using it to drive the switch

construction which selects the command.

The edit method is passed a reference to the account which is being edited. It then

passes that reference to the service methods which will do the actual work.

public void DoEdit (CustomerAccount account)

{

 string command;

 do

 {

 Console.WriteLine ("Editing account for {0}", account.GetName());

 Console.WriteLine (" Enter name to edit name");

 Console.WriteLine (" Enter pay to pay in funds");

 Console.WriteLine (" Enter draw to draw out funds");

 Console.WriteLine (" Enter exit to exit program");

 Console.Write ("Enter command : ");

 command = Console.ReadLine();

 command = command.Trim();

 command = command.ToLower();

 switch (command)

 {

 case "name" :

 EditName(account);

 break;

 case "pay" :

 PayInFunds(account);

 break;

 case "draw" :

 WithDrawFunds(account);

 break;

 }

 } while (command != "exit");

}

A Graphical User Interface Creating a Form

C# Programming © Rob Miles 2009 152

Programmer’s Point:Every Message Counts

You should remember that every time your program sends text to the user you may have a problem

with language. The menu for my bank account edit method sample code prints out text which is hard

wired to English. In a properly written program this would be managed in terms of message numbers

to make it easier to change the text which is output.

As a general rule in a production system you should never write out straight text to your user (this

includes the names of commands that the user might type in). Everything should be managed in

terms of message numbers. The only exception to this is the situation where the customer has

assured you that the program will only ever be written for use in a particular language. The C#

libraries contain a set of resources which help you manage the internationalization of your

programs.

Bank Notes: More Than One User Interface

The bank may have a whole range of requirements for editing account details. These

will range from an operator in a call centre, an operator on a dial up terminal, a

customer on a mobile phone and a customer at a cash machine. I hope that you can see

that the only way we can manage all these different ways of interacting with the bank

account is to separate the business object (the account itself) from the input/output

behaviour.

Note that we never do things like allow the user interface code to decide what

constitutes a valid name. This question is not the responsibility of the front end. The

only thing that can decide on the validity of a name is the account object itself. The user

interface must always work on the basis that it will use the business object to perform

this kind of validation.

A Graphical User Interface

It should come as no surprise that a graphical user interface on the screen is represented

by objects. When we are dealing with windows on the screen our program is actually

calling methods in the objects to make them do things like change size and colour.

Creating a Form

If I want a form on the screen for the user to interact with, I need to create an instance

of an object to do this for me. The object that I create is a Form. This class can be

found in the System.Windows.Forms namespace. I can create an instance of this

class and ask it to do things for me:

A Graphical User Interface Creating a Form

C# Programming © Rob Miles 2009 153

using System.Windows.Forms;

class FormsDemo

{

 public static void Main ()

 {

 Form f = new Form();

 f.ShowDialog();

 }

}

The Form class provides a method called ShowDialog. This asks the form to show

itself and pause the program until the form is closed. If I run the program above the

following appears on the screen:

When the window is closed with the red button, it disappears and the program ends.

Adding Components to a Form

A form is a container. It can 'contain' a number of graphical components which are

used to build the user interface. We must create the components and add them to the

form to make our user interface. For example, to add a label to the form we can do the

following:

using System.Windows.Forms;

class FormsDemo

{

 public static void Main ()

 {

 Form f = new Form();

 Label title = new Label ();

 title.Text="Hello";

 f.Controls.Add(title);

 f.ShowDialog();

 }

}

This creates a label, sets the text property of the label to “Hello” and then adds it to the

controls which are contained by the frame. The result of this code is a form which looks

like this:

I can fiddle with the properties of a component to move it around on the screen and do

lots of interesting things:

A Graphical User Interface Creating a Form

C# Programming © Rob Miles 2009 154

using System.Windows.Forms;

using System.Drawing;

class FormsDemo

{

 public static void Main ()

 {

 Form f = new Form();

 Label title = new Label ();

 title.Text="Hello";

 title.Top=50;

 title.Left=50;

 title.ForeColor = Color.Red;

 title.BackColor = Color.Yellow;

 f.Controls.Add(title);

 f.ShowDialog();

 }

}

The position on the screen is given in pixels (a pixel being an individual dot on the

screen). The origin (i.e. the pixel at 0,0) is in the top left hand corner of the screen.

The Color class is found in the System.Drawing namespace. It provides a whole

set of static colour values and also lets you create your own colours by setting the

intensity of the red, green and blue components. The program above would display a

form as below:

By adding a number of labels on the form and positioning them appropriately we can

start to build up a user interface.

Editing Text with a TextBox Component

Displaying labels is all very well, but what I want to do is provide a way that the name

text can be edited. The Windows Forms library provides a TextBox component which

is used for this. This is a component just like a label, but it provides text edit behaviour.

I can set the text property of the TextBox to the text I want to have edited. The user

can then enter text into the textbox and modify it. I can then read the text property back

when I want the updated value.

The TextBox gives me a great deal of functionality for very little effort on my part. It

lets the user cut and paste text in and out of the box using the Windows clipboard. It

lets the user type in huge amounts of text and scrolls the text around to make it fit in the

box. In short, it behaves like every text field you've ever used on a windows screen.

This is because it is actually the same thing as every text field you've ever used.

I can create and use a TextBox in my program as follows:

A Graphical User Interface Creating a Form

C# Programming © Rob Miles 2009 155

using System.Windows.Forms;

using System.Drawing;

class FormsDemo

{

 public static void Main()

 {

 Form f = new Form();

 Label nameLabel = new Label();

 nameLabel.Text="Name";

 nameLabel.Top=50;

 nameLabel.Left=0;

 f.Controls.Add(nameLabel);

 TextBox nameTextBox = new TextBox();

 nameTextBox.Top=50;

 nameTextBox.Left=100;

 nameTextBox.Text = "Rob";

 f.Controls.Add(nameTextBox);

 f.ShowDialog();

 }

}

I've fiddled slightly with the position of the label and given it a more sensible name.

I've also set the name text we are editing to be Rob, just to show how the components

work. If you run this program you get a form as follows:

This is not particularly flashy, but it is not bad for 25 or so lines of code. It also lets you

change the text in the name for whatever you want. But at the moment we have no way

of signalling when the edit has been finished. For that we need a button which we can

press to cause an event.

The Button Component

What we want is a button that the user can press when they have finished editing the

name. This will trigger my program to store the updated name and close the form down.

You have pressed buttons like these thousands of times when you have used programs.

Now we are going to find out how to make one work.

A Button is just like any other component. I can place it on the form and manage its

position just like any other:

A Graphical User Interface Events and Delegates

C# Programming © Rob Miles 2009 156

using System.Windows.Forms;

using System.Drawing;

class FormsDemo

{

 public static void Main()

 {

 Form f = new Form();

 Label nameLabel = new Label();

 nameLabel.Text="Name";

 nameLabel.Top=50;

 nameLabel.Left=0;

 f.Controls.Add(nameLabel);

 TextBox nameTextBox = new TextBox();

 nameTextBox.Top=50;

 nameTextBox.Left=100;

 nameTextBox.Text = "Rob";

 f.Controls.Add(nameTextBox);

 Button finishButton = new Button();

 finishButton.Top=80;

 finishButton.Left=100;

 finishButton.Text="Finished";

 f.Controls.Add(finishButton);

 f.ShowDialog();

 }

}

This gives me a button on the form which I can press:

However at the moment nothing happens when the button goes down. To get this to

work we have to bind a method in our program to the event which is generated when

the button is pressed. The windows forms system uses delegates to manage this.

Events and Delegates

Events are things that happen. (well, duh). Up until now our programs have run from

beginning to end. When the program wants something from the user it waits patiently

until that information is supplied (usually by means of a call of the ReadLine

method). In the early days of computers this is how they were all used. At any given

instant the program was either running through code or waiting for input. Nowadays

program use is quite different. Users expect to interact with items on a screen by

pressing "buttons" and triggering different actions inside the program.

This means that they way our programs work has to change. Rather than waiting for the

user to do something our programs must respond when an event is generated. The

upshot of this is that the programming language must provide some means by which

events can be managed.

A Graphical User Interface Events and Delegates

C# Programming © Rob Miles 2009 157

Events and method calls

In C# an event is delivered to an object by means of a call to a method in that object. In

this respect you can regard an event and a message as the same thing. From the point of

view of our name editing form we would like to have a particular method called when

the "Finished" button is pressed by the user. This method would validate the new name,

store it if it was OK and then close down the edit form.

Button Events

To get back to the problem we are solving; when the user clicks on the button on our

form this is registered by the Windows operating system and then passed into the form

as an event. The form decides which of the components on the form should be given the

event and calls a method in that component to tell it "you've been pressed". The button

then does its animation so that it moves in and out. Then it looks for people to tell about

the event. The button keeps a list of people to tell about events. The list is actually a list

of delegates.

So, to get a button to run a method of ours we need to create a delegate object and then

pass that to the button so that it knows to use it when the event occurs. A delegate is an

object which can be used to represent a particular method in an instance of a class. In

the case of our button, the delegate is going to represent the method that we want to

have called when the button is pressed. We pass the button a reference to this delegate

and it can then call the method it represents when the button is pressed.

The good news is that creating a delegate instance for a windows component is such a

common task that the forms library has provided a delegate class which does this for us.

We just need to create an instance of this class to get a delegate to give to the button.

The signature of the method that is called when the event occurs is the same for every

kind of event, from mouse movement, to button press, to window closing, so we can

use this class every time we need to create a delegate. The actual code to create a

delegate and assign it to a method is as follows:

using System.Windows.Forms;

using System.Drawing;

using System;

class FormsDemo

{

 public static void Main()

 {

 Form f = new Form();

 Label nameLabel = new Label();

 nameLabel.Text="Name";

 nameLabel.Top=50;

 nameLabel.Left=0;

 f.Controls.Add(nameLabel);

 TextBox nameTextBox = new TextBox();

 nameTextBox.Top=50;

 nameTextBox.Left=100;

 nameTextBox.Text = "Rob";

 f.Controls.Add(nameTextBox);

 Button finishButton = new Button();

 finishButton.Top=80;

 finishButton.Left=100;

 finishButton.Text="Finished";

 finishButton.Click +=

 new EventHandler(finishButton_Click);

 f.Controls.Add(finishButton);

 f.ShowDialog();

A Graphical User Interface An Account Edit Form

C# Programming © Rob Miles 2009 158

 }

 private static void finishButton_Click(

 object sender, EventArgs e)

 {

 Console.WriteLine ("Finish Pressed");

 }

}

The highlighted code is the bit that ties a delegate to the click event. The

EventHandler delegate class is in the System namespace and can refer to methods

which are void and accept two parameters, a reference to the object which caused the

event and a reference to an EventArgs instance which contains details about the

event which occurred.

In the code above I have an event handler method called finishButton_Click

which accepts these parameters (but doesn't do anything with them). Instead it prints

out a message each time the button is pressed. If you compile the above program and

run it you will find that each time you press the Finish button the program prints out a

message. In the completed editor this method will finish the edit off for us.

Note that we don’t actually have to use the parameters, often our methods will ignore

the values supplied. However, sometimes, for example when we are capturing mouse

movement events, we might want to use them to provide information such as the mouse

coordinates.

An Account Edit Form

My example code above is OK for showing how the forms work and components are

added to them, but it is not production code. This is because I have made everything by

hand and there is no edit object as such. If you remember our text editing code you will

recall that we had an object which did the editing for us. We passed it a reference to our

account and it managed the edit process, returning when the edit was complete.

To make a proper account editor we need to create a class which will do this job for us.

This will be used in almost exactly the same way as the text editor.

Extending the Windows Form class

It turns out that the best way to create a class to do this job is to extend the Form class

to make a new form of our own. This is a standard technique for using windows

components. The idea is that when the form is created the constructor in the form

makes all the components and adds them to the form in the appropriate places. Our

form can then be regarded as a customised version of an empty form. And the way that

you create customised versions of classes is to extend them.

A Graphical User Interface An Account Edit Form

C# Programming © Rob Miles 2009 159

The form will be passed a reference to the account instance which is being edited. It

then gets the properties out of the form and displays them for editing. When the user

presses the finish button the form must make sure that the name is valid. If it is the

name of the account class should be set and the form must then dispose of itself.

This code is the windows equivalent of the AccountEditTextUI method that we

created previously. All the form components are created in the constructor for the form.

The finishButton_Click method gets the name out of the text box and validates

it. If the name is invalid it uses a static method in the windows forms system to pop up a

message box and report an error:

using System;

using System.Windows.Forms;

public class AccountEditForm : System.Windows.Forms.Form

{

 private Label nameLabel;

 private TextBox nameTextBox;

 private Button finishButton;

 IAccount account;

 public AccountEditForm (IAccount inAccount)

 {

 this.account = inAccount;

 this.nameLabel = new Label();

 this.nameLabel.Text="Name";

 this.nameLabel.Top=50;

 this.nameLabel.Left=0;

 this.Controls.Add(this.nameLabel);

 this.nameTextBox = new TextBox();

 this.nameTextBox.Top=50;

 this.nameTextBox.Left=100;

 this.nameTextBox.Text = this.account.GetName();

 this.Controls.Add(this.nameTextBox);

 this.finishButton = new Button();

 this.finishButton.Top=80;

 this.finishButton.Left=100;

 this.finishButton.Text="Finished";

 this.finishButton.Click += new System.EventHandler(finishButton_Click);

 this.Controls.Add(this.finishButton);

 }

 private void finishButton_Click(object sender, System.EventArgs e)

 {

 string reply = account.ValidateName(nameTextBox.Text);

 if (reply.Length > 0)

 {

 System.Windows.Forms.MessageBox.Show(reply) ;

 return;

 }

 this.account.SetName(nameTextBox.Text) ;

 this.Dispose();

 }

}

A Graphical User Interface An Account Edit Form

C# Programming © Rob Miles 2009 160

This is how we tell the user that the name is not correct. There are a number of different

forms of this Show method which you can use to get different forms of message box

and even add extra buttons to it.

Disposing of forms

The Dispose method is used when we have finished with this form and we want it to

get rid of it. All the components on the form are destroyed and the form is removed

from the screen. Once we have disposed of a form we can never use it again. We will

need to create a new form instead.

The Dispose method is important because we must explicitly say when we have

finished with the instance. If we just removed a reference to the form object it will still

remain in memory until the garbage collector gets around to noticing it.

Using the Edit form

To use the edit form we must first construct an account instance. We then pass a

reference to the account into the constructor of an AccountEditForm.

Account a = new Account();

a.SetName("Rob");

AccountEditForm edit = new AccountEditForm (a);

edit.ShowDialog();

Console.WriteLine ("Name value : " + a.GetName());

This piece of test code creates an account and sets the name of the account holder to

Rob. It then creates an edit form and uses that to edit the name value in the account.

Modal Editing

The call of ShowDialog in the edit form is modal. This means that while the form is

on the screen the rest of the system is paused. In the code above the WriteLine is not

performed until after the edit form has been closed.

Visual Studio and Form Editing

The Visual Studio application can take care of all the hard work of creating forms and

adding components to them. It will also look after the creation of delegates for button

actions. However, it is important to remember that although it automates a lot of the

actions that I have performed by hand above, the fundamental principles that drive the

forms it produces are exactly the same.

Using Delegates Type safe delegates

C# Programming © Rob Miles 2009 161

Programmer’s Point:Customers really care about the user interface

If there is one part of the system which the customer is guaranteed to have strong opinions about

it is the user interface. The design of this should start at the very beginning of the product and be

refined as it goes. Never, ever assume you know that the user interface should work in a particular

way. I have had to spend more time re-working user interface code than just about any other part

of the system. The good news is that with something like Visual Studio it is very easy to produce

quite realistic looking prototypes of the front end of a system. These can then be shown to the

customer (get them signed off even) to establish that you are doing the right thing.

Using Delegates

Events and delegates are a very important part of C#. Therefore you should read this

text carefully and make sure you understand what is going on.

Delegates are useful because they let us manipulate references to methods. We can

manage which particular method is going to be called in a given situation in terms of a

lump of data which we can move around.

Delegates are an important part of how events are managed in a C# program. Events are

things that happen which our program may need to respond to. They include stuff like

people pressing buttons in our user interface, clocks going tick and messages arriving

via the network. In each case we need to tell the system what to do when the event

occurs. The way that C# does this is by allowing us to create instances of delegate

classes which we give the event generators. When the event occurs (this is sometimes

called the event "firing") the method referred to by the event is called to deliver the

message.

I call a delegate "a way of telling a piece of program what to do when something

happens". A posh description would have the form:

A delegate is a type safe reference to a method

in a class.

Type safe delegates

The phrase type safe in this context means that if the method accepts two integer

parameters and returns a string, the delegate for that method will have exactly the same

appearance and cannot be used in any other way. This word is used to distinguish a

delegate from things like pointers which are used in more primitive languages like C.

In C you can create pointers to methods, but the C environment does not know (or even

care) what the methods really look like. This means that you can call them in the wrong

way and cause your program to explode. Don’t worry about this too much. Just

remember that delegates are safe to use.

Using a Delegate

As an example, consider the calculation of fees in our bank. The bank will have a

number of different methods which do this, depending on the type of customer and the

Using Delegates Type safe delegates

C# Programming © Rob Miles 2009 162

status of that customer. It might want to have a way in which a program can choose

which fee calculation method to use as it runs.

We have seen that things like overriding let us create methods which are specific to a

particular type of object, for example we provided a custom WithdrawFunds for the

BabyAccount class which only lets us draw out a limited amount of cash. These

techniques are very useful, but they are hard wired into the code that I write. Once I've

compiled the class the methods in it cannot change.

A delegate is a "stand in" for a method. If you call the delegate it calls the method it

presently refers to. This means I can use it as a kind of method selector. A delegate type

is created like this:

public delegate decimal CalculateFee (decimal balance);

Note that I've not created any delegates yet, I've just told the compiler what the delegate

type CalculateFee looks like. This delegate can stand in for a method which

accepts a single decimal parameter (the balance on the account) and returns a decimal

value (the amount we are going to charge the customer). An example of a method we

might want to use with this delegate you could consider this one:

public decimal RipoffFee (decimal balance)

{

 if (balance < 0)

 {

 return 100;

 }

 else

 {

 return 1;

 }

}

This is a rather evil fee calculator. If you are overdrawn the fee is 100 pounds. If you

are in credit the fee is 1 pound. If I want to use this in my program I can make an

instance of CalculateFee which refers to it:

CalculateFee calc = new CalculateFee (RipoffFee);

Now I can "call" the delegate and it will actually run the ripoff calculator method:

fees = calc(100);

The calc delegate presently refers to a delegate instance which will use the

RipoffFee method. I can change that by making another delegate:

calc = new CalculateFee (FriendlyFee);

Now when I "call" calc it will run the FriendlyFee method. This of course only

works if FriendlyFee is a method which returns a value of type decimal and accepts

a single decimal value as a parameter.

An instance of a delegate is an object like any other. This means that it can be managed

in terms of references, so I can build structures which contain delegates and I can also

pass delegates in and out of methods. You can regard a list of delegates as a list of

methods that I can call.

This gives us another layer of abstraction and means that we can now design programs

which can have behaviours which change as the program runs. For now however, it is

best just to consider them in terms of how we use delegates to manage the response of a

program to events.

Structured Error Handling The Exception class

C# Programming © Rob Miles 2009 163

Programmer’s Point:Delegates are strong magic

Delegates provide a very useful facility, of making programs able to change what they do as they

run. There are situations when this can be very useful. They are also a major part of how C#

programs interact with the user. But I don't use them a great deal in my programs outside of this

and it is not that likely you will either. They are a bit like that strange spanner in your toolbox which

you only use once in a while, but when you do it is the only one that fits. So use them sparingly and

make sure that they are the only way of solving the problem when you do use them.

Structured Error Handling

By now I hope that you are starting to think very hard about how programs fail. You

should also be thinking that when you build a system you should consider how you are

going to manage the way that it will fail. This is actually a very important part of the

design process. When something bad happens the program must deal with this in a

managed way. The key to achieving this is to think about making your own custom

exceptions for your system.

We have been on the receiving end of exceptions already. We have seen that if

something bad happens whilst a file is being read, or a Parse method is given an

invalid string, the system will throw an exception to indicate that it is unhappy. This

means that potentially badly behaved code like this has to be enclosed in a try –

catch construction so that our program can respond sensibly. Now we are going to

take a closer look at exceptions and see about creating our own exception types.

The Exception class

The C# System namespace holds a large number of different exceptions, but they are all

based on the parent Exception class. If you want to throw your own exceptions you

are strongly advised to create your own exception type which extends the system one.

You can generate System.Exception when something goes wrong, but this means

that exceptions produced by your code will get mixed up with those produced by other

parts of the system. If you want your code to be able to explicitly handle your errors the

best way forward is to create one or more of your own exceptions.

This means that, along with everything else in your system, you will need to design how

your program will handle and generate errors. This all (of course) leads back to the

metadata which you have gathered, in that the specification will give you information

about how things can fail and the way that the errors are produced.

Creating your own exception type

Creating your exception type is very easy. It can be done by simply extending the

System.Exception class:

public class BankException : System.Exception

{

}

This works because the System.Exception class has a default constructor which

takes no parameters. The default constructor in BankException (which is added

automatically by the compiler), can just use this to make an Exception instance.

Structured Error Handling Throwing an Exception

C# Programming © Rob Miles 2009 164

However, there is a version of the Exception constructor which lets us add a message to

the exception. This can be picked up and used to discover what has gone wrong. To

create a standard exception with a message I pass the constructor a string. If I want to

use this with my bank exception I have to sort out the constructor chaining for my

exception class and write code as follows:

public class BankException : System.Exception

{

 public BankException (string message) :

 base (message)

 {

 }

}

This makes use of the base keyword to call the constructor of the parent class and pass

it the string message.

Throwing an Exception

The throw keyword throws an exception at that point in the code. The thing that is

thrown must be based on the System.Exception class. For example, I might want

to throw an exception if the name of my account holder is an empty string. I can do this

with the code:

if (inName.Length == 0)

{

 throw new BankException("Invalid Name");

}

The throw keyword is followed by a reference to the exception to be thrown. In the

code above I make a new instance of the bank exception and then throw that. At this

point the execution would transfer to the “nearest” catch construction. This might be a

catch of mine, or it might be one supplied by the system. If the exception is caught by

the system it means that my program will be terminated. However, I can catch the

exception myself as follows:

Account a;

try

{

 a = new Account(newName, newAddress);

}

catch (BankException exception)

{

 Console.WriteLine("Error : " + exception.Message);

}

The code tries to create a new account. If doing this causes an exception to be thrown,

the code in the exception handler is obeyed. The reference exception is set to refer

to the exception which has been thrown. The Message member of an exception is the

text which was given. This means that if I try to create an account with an empty name

the exception will be thrown, the catch invoked, and the message printed.

Structured Error Handling Multiple Exception Types

C# Programming © Rob Miles 2009 165

Programmer’s Point:Design your error exceptions yourself

An exception is an object which describes how things have gone wrong. It can contain a text

message which you can display to explain the problem to the user. However, you should seriously

consider extending the exception class to make error exceptions of your own which are even more

informative. Errors should be numbered, i.e. your exceptions should be tagged with an error number.

This helps a great deal in working with different languages. If the customer can say “Error number

25” when they are reporting a problem it makes it much easier for the support person to respond

sensibly. Note that, as with just about everything else, you need to design in your handling of

errors.

Multiple Exception Types

It is worth spending time thinking about how the exceptions and errors in your system

are to be managed. We can have many catch constructions if we like, and the catch will

be matched up to the type of exception that was thrown:

public class BankExceptionBadName : System.Exception

{

 public BankExceptionBadName (string message) :

 base (message)

 {

 }

}

public class BankExceptionBadAddress : System.Exception

{

 public BankExceptionBadAddress (string message) :

 base (message)

 {

 }

}

Now I can use different catches, depending on how the code fails:

Account a;

try

{

 a = new Account("Rob", "");

}

catch (BankExceptionBadName nameException)

{

 Console.WriteLine("Invalid name : " +

 nameException.Message);

}

catch (BankExceptionBadAddress addrException)

{

 Console.WriteLine("Invalid address : " +

 addrException.Message);

}

catch (System.Exception exception)

{

 Console.WriteLine("System exception : " +

 exception.Message);

}

Each of the catches matches a different type of exception. At the very end of the list of

handlers I have one which catches the system exception. This will be called if the

exception is not a name or an address one.

Program Organisation Using Separate Source Files

C# Programming © Rob Miles 2009 166

Programmer’s Point:Programs often fail in the error handlers

If you think about it, error handlers are rather hard to test. They only get run when something bad

happens, and most of the time you will be using test data which assumes everything is OK. This

means that errors are more likely to get left in the error handlers themselves, since the code

doesn’t get exercised as much as the rest of the system. Of course this is a recipe for really big

disasters, in that the error handler is supposed to put things right and if it fails it will usually make

a bad situation much worse.

As a professional programmer you must make sure that your error handling code is tested at least

as hard as the rest of the system. This might mean that you have to create special test versions of

the system to force errors into the code. Believe me, it is worth the effort!

Error handling should be something you design in. When you create the system you decide how many

and what kind of errors you are going to have to manage.

Program Organisation

At the moment we have put the entire program source that we have created into a single

file, which we compile and run. This is fine for teeny tiny projects, but now we are

starting to write much larger programs and we need a better way to organise things.

This is especially important when you consider that a given project may have many

people working on it.

To do this we have to solve two problems:

 how we physically spread the code that we write around a number of files

 how we logically identify the items in our program.

The two problems are distinct and separate and C# provides mechanisms for both. In

this section we are going to see how a large program can be broken down into a number

of different chunks.

Using Separate Source Files

In a large system a programmer will want to spread the program over several different

source files. When you design your solution to a problem you need to decide where all

the files live.

In our bank management program we have identified a need for a class to keep track of

a particular account. The class will be called Account. Consider a really simple

Account class:

Program Organisation Using Separate Source Files

C# Programming © Rob Miles 2009 167

public class Account {

 private decimal balance = 0;

 public void PayInFunds (decimal amount) {

 balance = balance + amount;

 }

 public decimal GetBalance () {

 return balance;

 }

 public bool WithDrawFunds (decimal amount) {

 if (amount < 0) {

 return false ;

 }

 if (balance >= amount) {

 balance = balance - amount ;

 return true;

 }

 else {

 return false ;

 }

 }

}

This is a fairly well behaved class in that it won't let us withdraw more money than we

have in the account. We could put it into a file called "Account.cs" if we wanted to.

However, we might want to create lots of other classes which will deal with bank

accounts. So instead I have decided to put the class into a file called

"AccountManagement.cs".As I add more account management The problem is that

the compiler now gets upset when I try to compile the file:

error CS5001: AccountManagement.exe' does not have an

entrypoint defined

The compiler is expecting to produce an executable program. These have an entry point

in the form of the Main method. Our bank account class does not have a main method

because the program will never start by actually running an account. Instead other

programs will run and create accounts when they need them. So, the compiler cannot

make an executable file, since it does not know where the program should start.

Note that I have made the Account class public. This is so that classes in other

files can make use of it. You can apply the protection levels to classes in the same way

that you can protect class members. Generally speaking your classes will be public if

you want them to be used in libraries.

Creating a Library

I solve this problem by asking the compiler to produce a library instead. I use the target

option to the compile command. Options are a way of modifying what a command

does. The compiler can tell that it is being given an option because options always start

with a slash character:

csc /target:library AccountManagement.cs

The compiler will not now look for a Main method, because it has been told to

produce a library rather than a program. If I look at what has been created I find that the

compiler has not made me an executable, instead it has made me a library file:

AccountManagement.dll

The language extension dll stands for dynamic link library. This means that the content

of this file will be loaded dynamically as the program runs.

Program Organisation Using Separate Source Files

C# Programming © Rob Miles 2009 168

Using a Library

Now I have a library I next have to work out how to use it. Firstly I'm going to create

another source file called AccountTest.cs. This contains a Main method which

will use the Account class:

using System;

class AccountTest {

 public static void Main () {

 Account test = new Account();

 test.PayInFunds (50);

 Console.WriteLine ("Balance:" + test.GetBalance());

 }

}

This makes a new account, puts 50 pounds in it and then prints out the balance. If I try

to compile it I get a whole bunch of errors:

AccountTest.cs(5,3): error CS0246: The type or namespace name

'Account' could not be found (are you missing a using

directive or an assembly reference?)

AccountTest.cs(6,3): error CS0246: The type or namespace name

'test' could not be found (are you missing a using directive

or an assembly reference?)

AccountTest.cs(7,37): error CS0246: The type or namespace

name 'test' could not be found (are you missing a using

directive or an assembly reference?)

The problem is that the compiler does not know to go and look in the file

AccountManagement.cs to find the Account class. This means that it fails to

create test, which causes further errors.

To solve the problem I need to tell the compiler to refer to AccountManagement to

find the Account class:

csc /reference:AccountManagement.dll AccountTest.cs

The reference option is followed by a list of library files which are to be used. In this

case there is just the one file to look at, which is the library that contains the required

class. The compiler now knows where to find all the parts of the application, and so it

can build the executable program.

Library References at Runtime

We have now made two files which contain program code:

AccountManagement.dll the library containing the Account class code

AccountTest.exe the executable program that creates an Account

instance

Both these files need to be present for the program to work correctly. This because of

the "dynamic" in dynamic link library. It means that library is only loaded when the

program runs, not when it is built.

Deleting System Components

This means that if I do something horrid like delete the

Acccountmanagement.dll file and then run the program this causes all kinds of

nasty things to happen:

Program Organisation Namespaces

C# Programming © Rob Miles 2009 169

Unhandled Exception: System.IO.FileNotFoundException: File or

assembly name AccountManagement, or one of its dependencies,

was not found.

File name: "AccountManagement" at AccountTest.Main()

… lots of other stuff

This means that we need to be careful when we send out a program and make sure that

all the components files are present when the program runs.

Updating System Components

Creating a system out of a number of executable components has the advantage that we

can update part of it without affecting everything else. If I modify the

AccountManagement class and re-compile it, the new version is picked up by

AccountTest automatically. Of course this only works as long as I don't change the

appearance of the classes or methods which AccountTest uses.

The good news is that I can fix the broken parts of the program without sending out an

entire new version.

The bad news is that this hardly ever works. There is a special phrase, "dll hell",

reserved for what happens. Unless the fixed code is exactly right there is a good chance

that it might break some other part of the program. Windows itself works in this way,

and the number of times that I've installed a new program (or worse yet an upgrade of

an existing one) which has broken another program on the computer is too numerous to

happily remember.

Programmer’s Point:Use Version Control and Change Management

So many things end up being rooted in a need for good planning and management. And here we are

again. When you think about selling your application for money you must make sure that you have a

managed approach to how you are going to send out upgrades and fixes. The good news is that there

are ways of making sure that certain versions of your program only work with particular program

files. The bad news is that you have to plan how to use this technology, and then make sure you use

it. If this sounds boring and pedantic then I'm very sorry, but if you don't do this you will either go

mad or bankrupt. Or both.

Namespaces

We can use library files to break up our solution into a number of files. This makes

management of the solution slightly easier. But we also have another problem. We don't

just want to break things into physical chunks. We also want to use logical ones as well.

If you are not sure what I mean by this, consider the situation in our bank. We have

decided that Account is a sensible name for the class which holds all the details of a

customer account.

But if you consider the whole of the bank operations you find that the word "account"

crops up all over the place. The bank will buy things like paper clips, rubber stamps,

little pens on chains (pre-supplied with no ink in of course) and the like from suppliers.

You could say that the bank has an account with such a supplier. It may well wish to

keep track of these accounts using a computer system. Perhaps the programmers might

decide that a sensible name for such a thing would be Account. Arrgh! We are now

heading for real problems. If the two systems ever meet up we can expect a digital fight

to the death about what "Account" really means. Which would be bad.

Program Organisation Namespaces

C# Programming © Rob Miles 2009 170

We could solve the problem by renaming our account class

CustomerBankAccount. But this would be messy, and mean that at design time we

have to make sure that we name all our classes in a way which will always be unique.

A far better way would be to say that we have a CustomerBanking namespace in

which the word Account has a particular meaning. We can also have an

EquipmentSupplier namespace as well. This prevents the two names from

clashing, in that they are not defined in the same namespace.

Putting a Class in a Namespace

Up until now every name we have used has been created in what is called the global

namespace. This is because we have not explicitly set up a namespace in our source

files. However, they are very easy to set up:

namespace CustomerBanking {

 public class Account {

 private decimal balance = 0;

 public void PayInFunds (decimal amount) {

 balance = balance + amount;

 }

 public decimal GetBalance () {

 return balance;

 }

 public bool WithDrawFunds (decimal amount) {

 if (amount < 0) {

 return false ;

 }

 if (balance >= amount) {

 balance = balance - amount ;

 return true;

 }

 else {

 return false ;

 }

 }

 }

}

 I have used the namespace keyword to identify the namespace. This is followed by a

block of classes. Every class declared in this block is regarded as part of the given

namespace, in this case CustomerBanking.

A given source file can contain as many namespace definitions and each can contain as

many classes as you like.

Using a Class from a Namespace

A Global class (i.e. one created outside any namespace) can just be referred to by its

name. If you want to use a class from a namespace you have to give the namespace as

well.

CustomerBanking.Account test;

This creates a variable which can refer to instances of the Account class. The

Account class we use is the one in the CustomerBanking namespace.

A name like this, with the namespace in front, is known as a fully qualified name. If we

want to create an instance of the class we use the fully qualified name again:

test = new CustomerBanking.Account();

If I want to use the Account class from the CustomerBanking namespace I have

to modify my test class accordingly.

Program Organisation Namespaces

C# Programming © Rob Miles 2009 171

Using a namespace

If you are using a lot of things from a particular namespace C# provides a way in which

you can tell the compiler to look in that namespace whenever it has to resolve the name

of a particular item. We do this with the using keyword:

using CustomerBanking ;

When the compiler sees a line like:

Account RobsAccount;

- it automatically looks in the CustomerBanking namespace to see if there is a class

called Account. If there is it uses that. We have already used this technique a lot. The

System namespace is where a lot of the library components are located. We can use

these by means of fully qualified names:

System.Console.WriteLine ("Hello World");

However, it is common for most programs to have the line:

using System;

- at the very top. This means that the programmer can just write:

Console.WriteLine ("Hello World");

The compiler goes "ah, I'll go and have a look for a thing called Console in all the

namespaces that I've been told to use". If it finds one, and only one, Console then all

is well and it uses that. If it finds two Console items (if I was an idiot I could put a

Console class in my CustomerBanking namespace I suppose) it will complain

that it doesn't know which to use.

Nesting Namespaces

You can put one namespace inside another. This allows you to break things down into

smaller chunks. The System namespace is like this, there is a namespace which is part

of the System namespace which is specifically concerned with Input/Output. You get to

use the items in the System.IO namespace with an appropriate include:

using System.IO ;

In terms of declaring the namespace you do it like this:

namespace CustomerBanking {

 namespace Accounts {

 // account classes go here

 }

 namespace Statements {

 // statement classes go here

 }

 namespace RudeLetters {

 // rude letter classes go here

 }

}

Now I can use the classes as required:

using CustomerBanking.RudeLetters ;

Of course the namespaces that you use should always be carefully designed. But then

again, you'd probably figured that one out already.

Debugging Namespaces in Separate Files

C# Programming © Rob Miles 2009 172

Namespaces in Separate Files

There is no rule that says you have to put all the classes from a particular namespace in

a particular file. It is perfectly OK to spread the classes around a number of different

source files. You have to make sure that the files you want to use contain all the bits are

needed, and this means of course more planning and organising.

Programmer’s Point:Fully Qualified Names are Good

There are two ways you can get hold of something. You can spell out the complete location by using a

Fully Qualified Name (CustomerBanking.RudeLetters.OverdraftWarning) or you can get hold

a items in a namespace with using. Of the two I much prefer the fully qualified name. I know that

this makes the programs slightly harder to write, but it means that when I'm reading the code I can

see exactly where a given resource has come from. If I just see the name OverdraftWarning in

the code I have no idea where that came from and so I have to search through all the namespaces

that I'm using to find it.

Debugging

Some people are born to debug. Not everyone is good at debugging, some will always

be better than others. Having said that there are techniques which you can use to ease

the process, and we are going to explore some of these here. The good news is that if

you use a test driven approach to your development the number of faults that are found

by the users should be as small as possible, but there will still be some things that need

to be fixed.

Incidentally, the reason why problems with programs are called bugs is that the original

one was caused by an actual insect which got stuck in some contacts in the computer,

causing it to fail. This is not however how must bugs are caused. It is very rarely that

you will see your program fail because the hardware is faulty, I've been programming

for many years and only seen this in a handful of occasions. The sad thing is that most

of the bugs in programs have been put there by programmers. In other words,

debugging is working very hard to find out how stupid you were in the first place.

Fault Reporting

We have already seen that a fault is something which the user sees as a result of an

error in your program.

Faults are uncovered by the testing process or by users. If a program fails as part of a

test, the steps taken to manifest it will be well recorded. However, if a user reports a

fault the evidence may bell be anecdotal, i.e. you will not be supplied with a sequence

of steps which cause the fault to appear, you will simply be told "There's a bug in the

print routine".

There is a strong argument for ignoring a fault report if you have not been given a

sequence of steps to follow to make it happen. However, this approach will not make

you popular with users. It is important to stress to users that any fault report will only

be taken seriously if it is well documented.

Debugging Bugswatting

C# Programming © Rob Miles 2009 173

Programmer’s Point:Design Your Fault Reporting Process

Like just about everything else I've ever mentioned, the way in which you manage your fault reports

should be considered at the start of the project. In other words, you should set up a process to

deal with faults that are reported. In a large scale development fault reports are managed, assigned

to programmers and tracked very carefully. The number of faults that are reported, and the time

taken to deal with them, is valuable information about the quality of the thing that you are making.

Also, if you formalize (or perhaps even automate) the fault reporting process you can ensure that

you get the maximum possible information about the problem.

The two types of Fault

Faults split into two kinds, those which always happen and those which sometimes

happen.

Faults which always happen are easy, you can perform the sequence which always

causes the bug to manifest itself and then use suitable techniques to nail it (see later).

Faults which sometimes happen are a pain. What this means is that you do not have a

definite sequence of events which causes the system to fail. This does not mean that

there is no sequence (unless you are suffering from a hardware induced transient of

some kind – which is rather rare) but that you have not found the sequence yet.

An example would be a print function which sometimes crashes and works at other

times. You might track this down to the number of pages printed, or the amount of text

on the page, or the size of the document which is being edited when the print is

requested.

The manifestation of a fault may be after the error itself has actually occurred, for

example a program may fail when an item is removed from a database, but the error

may be in the routine which stored the item, or in code which overwrote the memory

where the database lives.

A fault may change or disappear when the program itself is changed; errors which

overwrite memory will corrupt different parts of the program if the layout of the code

changes. This can lead to the most annoying kind of fault, where you put in extra print

statements to find out more about the problem, and the problem promptly disappears!

If you suspect such an error, your first test is to change the code and data layout in

some way and then re-run the program. If the fault changes in nature this indicates

problems with program or data being corrupted.

Bugswatting

You can split faults into other categories, where the program crashes (i.e. stops

completely) or when it does the wrong thing. Surprisingly, crashes are often easier to

fix. They usually point to:

 a state which is not catered for (make sure that all selection statements

have a default handler which does something sensible and that you use

defensive programming techniques when values are passed between

modules)

 programs that get stuck into loops, do – while constructions which

never fail, for loops which contain code which changes the control

variable, methods that call themselves by mistake and recurse their way

into stack overflow

 an exception that is not caught properly

Debugging Bugswatting

C# Programming © Rob Miles 2009 174

If your program does the wrong thing, this can be harder to find. Look for:

 use of un-initialised members of classes

 typographical errors (look for incorrectly spelt variable names,

incorrect comparison operators, improperly terminated comments)

 logical errors (look for faults in the sequence of instructions, invalid

loop termination's, wrongly constructed logical conditions)

As I said above, some folks are just plain good at finding bugs. Here are some tips:

1. Don't make any assumptions. If you assume that "the only way it could get

here is through this sequence" or "there is no way that this piece of code

could be obeyed" you will often be wrong. Rather than make assumptions,

add extra code to prove that what you think is happening is really

happening.

2. Explain the problem to someone else - even if it is just the cat! The act of

explaining the problem can often lead you to deduce the answer. It is best

if the person you are talking to is highly sceptical of your statements.

3. Look at all possible (if seemingly unrelated) factors in the manifestation

of the bug. This is particularly important if the bug is intermittent. If the

bug appears on Friday afternoons on your UNIX system, find out if

another department uses the machine to do a payroll run at that time and

fills up all the scratch space, or the loading department turn on the big

hoist and inject loads of noise into the mains.

4. Leave the problem alone for a while. Go off and do something different

and you may find that the answer will just appear. Alternatively you may

find the answer as soon as you come back to the problem.

5. Remember that although the bug is of course impossible, it is happening.

This means that either the impossible is happening, or one of your

assumptions that it is impossible is wrong!

6. Can you get back to a state where the bug was not present, and then look

at the changes made since? If the system is failing as a result of a change

or, heaven forbid, a bug fix, try to move back to a point where the bug is

not there, and then introduce the changes until the bug appears.

Alternatively, look carefully at how the introduction of the feature affects

other modules in the system. A good Source Code Control System is very

valuable here, in that it can tell you exactly what changes have been made

from one version to the next.

One thing that I should make clear at this point is that the process of debugging is that

of fixing faults in a solution which should work. In other words you must know how the

program is supposed to work before you try and fix problems with what it actually

does. I have been nearly moved to tears by the sight of people putting in another loop

or changing the way their conditions to "see if this will make the program work". Such

efforts are always doomed, just like throwing a bunch of electrical components at the

wall and expecting a DVD player to land on the floor is also not going to work.

Rip it up and start again

In some projects it is possible that the effort involved in starting again is less than trying

to find out what is wrong with a broken solution that you have created. If you have

taken some time off from debugging, explained the code to a friend and checked all

your assumptions then maybe, just maybe this might be the best way forward.

The End? Making Perfect Software

C# Programming © Rob Miles 2009 175

Programmer’s Point:Bug Fixes Cause Bugs

The primary cause of bugs is probably the bug fixing process. This is because when people change

the program to make one bit of it work the change that they make often breaks other features of

the system. I have found statistics which indicate that "two for one" is frequently to be expected,

in that every bug fix will introduce two brand new bugs. The only way round this is to make sure that

your test process (which you created as a series of lots of unit tests) can be run automatically after

you've applied the fix. This at least makes sure that the fix has not broken anything important.

Making Perfect Software

There is no such thing as perfect software. One of the rules by which I work is that "any

useful program will have bugs in it". In other words I can write programs that I can

guarantee will contain no bugs. However, such programs will be very small and

therefore not be good for much. As soon as I create a useful program, with inputs,

outputs and some behaviours, I start introducing bugs.

This does not mean that every program that I write is useless, just that it will not be

perfect. When considering faults you must also consider their impact. Part of the job of

a project manager in a development is deciding when a product is good enough to sell,

and whether or not a fault in the code is a "stopper" or not.

A stopper is a fault which makes the program un-saleable. If the program crashes every

third time you run it, or sometimes destroys the filestore of the host computer, this is

probably the behaviour of a stopper bug. But if it does something like always output the

first page twice if you do a print using the Chinese font and a certain kind of laser

printer this might be regarded as a problem most users could live with.

This means that you need to evaluate the impact of the faults that get reported to you,

prioritise them and manage how they are dealt with. You also need to be aware of the

context of the development. For example, a fault in a video game is much less of a

problem than one in an air traffic control system.

The key to making software that is as perfect as possible is to make sure that you have a

good understanding of the problem that you are solving, that you know how to solve it

before you start writing code and that you manage your code production process

carefully. Read some of the recommended texts at the end of this document for more on

this aspect of programming.

The End?

This is not all you need to know to be a programmer. It is not even all you need to

know to be a C# programmer. However, it is quite a good start, but there are quite a

few things missing from this text, because we don't have time to teach them all. You

should take a look at the following things if you want to become a great C#

programmer:

 serialisation

 attributes

 reflection

 networking

The End? Continuous Development

C# Programming © Rob Miles 2009 176

Continuous Development

A good programmer has a deliberate policy of constantly reviewing their expertise and

looking at new things. If you are serious about this business you should be reading at

least one book about the subject at any one time. I have been programming for as long

as I can remember but I have never stopped learning about the subject. And I've never

stopped programming, reading books about programming and looking at other people's

code.

Further Reading

Code Complete Second Edition:

Steve McConnell

Published by Microsoft: ISBN 0-7356-1967-0

Not actually a book about C#. More a book about everything else. It covers a range of

software engineering and programming techniques from the perspective of "software

construction". If you have any serious intention to be a proper programmer you

should/must read/own this book.

How to be a programmer

This web site is also worth a read, as it covers the behaviours of a programmer very

well indeed:

http://samizdat.mines.edu/howto/HowToBeAProgrammer.html

Glossary of Terms Abstract

C# Programming © Rob Miles 2009 177

Glossary of Terms

Abstract

Something which is abstract does not have a "proper" existence as such. When writing

programs we use the word to mean "an idealised description of something". In the case

of component design an abstract class contains descriptions of things which need to be

present, but it does not say how they are to be realised. In C# terms a class is abstract if

it is marked as such, or if it contains one or more method which is marked as abstract.

You can't make an instance of an abstract class, but you can use it as the basis of, or

template for, a concrete one. For example, we may decide that we need many different

kinds of receipt in our transaction processing system: cash receipt, cheque receipt,

wholesaler receipt etc. We don't know how each particular receipt will work inside, but

we do know those behaviours which it must have to make it into a receipt.

We can therefore create an abstract Receipt class which serves as the basis of all the

concrete ones. Each "real" receipt class is created by extending the parent, abstract one.

This means that it is a member of the receipt family (i.e. it can be treated as a Receipt)

but it works in its own way.

Accessor

An accessor is a method which provides access to the value managed within a class.

Effectively the access is read only, in that the data is held securely in the class but code

in other classes may need to have access to the value itself. An accessor is implemented

as a public method which will return a value to the caller. Note that if the thing being

given access to is managed by reference the programmer must make sure that it is OK

for a reference to the object is passed out. If the object is not to be changed it may be

necessary to make a copy of the object to return to the caller.

Base

base is a C# keyword which has different meanings depending on the context in which

it is given. It is used in a constructor of a child class to call the constructor in the parent.

It is also used in overriding methods to call the method which they have overridden.

Call

When you want to use a method, you call it. When a method is called the sequence of

execution switches to that method, starting at the first statement in its body. When the

end of the method, or the return statement, is reached the sequence of execution returns

to the statement immediately following the method call.

Class

A class is a collection of behaviours (methods) and data (properties). It can be used to

represent a real world item in your program (for example bank account). Whenever you

Glossary of Terms Code Reuse

C# Programming © Rob Miles 2009 178

need to collect a number of things into a single unit you should think in terms of

creating a class.

Code Reuse

A developer should take steps to make sure that a given piece of program is only

written once. This is usually achieved by putting code into methods and then calling

them, rather than repeating the same statements at different parts of a program. The use

of class hierarchies is also a way of reusing code. You only need to override the

methods that you want to update.

Cohesion

A class has high cohesion if it is not dependent on/coupled to other classes.

Collection

The C# library has the idea of a collection as being a bunch of things that you want to

store together, for example all the players in a football team or all the customers in a

bank. One form of a collection is an array. Another is the hashtable, which allows you

to easily find a particular item based on a key value in that item. A collection class will

support enumeration which means that it can be asked to provide successive values to

the C# foreach construction.

Whenever you want to store a number of things together you should consider using a

collection class to do this for you. The collection classes can be found in the

System.Collections namespace.

Compiler

A compiler takes a source file and makes sense of it. The compiler will produce an

executable file which is run. Writing compilers is a specialised business, they used to be

written in assembly language but are now constructed in high level languages (like

C#!). A compiler is a large program which is specially written for a particular computer

and programming language. Most compilers work in several phases. The first phase, the

pre-processor, takes the source which the user has written and then finds all the

individual keywords, identifiers and symbols producing a stream of program source

which is fed to the "parser" which ensures that the source adheres to the grammar of the

programming language in use. The final phase is the code generator, which produces

the executable file which is later run by the host.

Component

A component is a class which exposes its behaviour in the form of an interface. This

means that rather than being thought of in terms of what it is (for example a

BabyCustomerAccount) it is thought of in terms of what it can do (implement the

IAccount interface to pay in and withdraw money). When creating a system you

should focus on the components and how they interact. Their interactions are expressed

in the interfaces between them.

Glossary of Terms Constructor

C# Programming © Rob Miles 2009 179

Constructor

A constructor is a method in a class which is called as a new instance of that class is

created. Programmer’s use constructors to get control when an instance is created and

set up the values inside the class. If a class is a member of a hierarchy, and the parent

class has a constructor, it is important when making the child that you ensure the parent

constructor is called correctly. Otherwise the compiler will refuse to compile your

program.

Coupling

If a class is dependent on another the two classes are said to be coupled. Generally

speaking a programmer should strive to have as little coupling in their designs as

possible, since it makes it harder to update the system.

Coupling is often discusses alongside cohesion, in that you should aim for high

cohesion and low coupling.

Creative Laziness

It seems to me that some aspects of laziness work well when applied to programming.

Code reuse, where you try and pick up existing code, is a good example of this. Making

sure the spec. is right before you do anything is another way of saving on work.

Howver, structuring the design so that you can get someone else to do a lot of the work

is probably the best example of creative laziness in action.

Delegate

A delegate is a type safe reference to a method. A delegate is created for a particular

method signature (for example this method accepts two integers and returns a float). It

can then be directed at a method in a class which matches that signature. Note that the

delegate instance holds two items, a reference to the instance/class which contains the

method and a reference to the method itself. The fact that a delegate is an object means

that it can be passed around like any other.

Delegates are used to inform event generators (things like buttons, timers and the like)

of the method which is to be called when the event they generate takes place.

Dependency

In general, too much dependency in your designs is a bad thing. A dependency

relationship exists between two classes when a change in code in one class means that

you might have to change the other as well. It usually means that you have not properly

allocated responsibility between the objects in your system and that two objects are

looking after the same data. As an example see the discussion of the CustomerAccount

and ChildAccount Load method on page 143.

Dependency is often directional. For example a user interface class may be dependent

on a business object class (if you add new properties to the business object you will

need to up date the user interface). However, it is unlikely that changes to the way that

the user interface works will mean that the business object needs to be altered.

Glossary of Terms Event

C# Programming © Rob Miles 2009 180

Event

An event is some external occurrence which your program may need to respond to.

Events include things like mouse movement, keys being hit, windows being resized,

buttons being pressed, timers going tick etc. Many modern programs work on the basis

of events which are connected to methods. When the event occurs the method is called

to deliver notification. Windows components make use of delegates (a delegate is a

type safe reference to a method) to allow event generators to be informed of the method

to be called when the event takes place.

Functional Design Specification

Large software developments follow a particular path, from the initial meeting right up

to when the product is handed over. The precise path followed depends on the nature of

the job and the techniques in use at the developer; however, all developments must start

with a description of what the system is to do. This is the most crucial item in the whole

project, and is often called the Functional Design Specification, or FDS.

Globally Unique Identifier (GUID)

This is something which is created with the intention of it being unique in the world. It

gives an identifier by which something can be referred to. GUID creation involves the

use of random values and the date and time, amongst other things. GUIDs are used for

things like account references and tags which must be unique. Most operating systems

and programmer libraries provide methods which will create GUIDs.

Hierarchy

A hierarchy is created when a parent class is extended by a child to produce a new class

with all the abilities of the parent plus new and modified behaviours specific to the

requirements of the child. Extending the child produces a further level of hierarchy. The

classes at the top of the hierarchy should be more general and possibly abstract (for

example BankAccount) and the classes at the lower levels will be more specific (for

example ChildBankAccount).

Immutable

An immutable object cannot be changed. If an attempt is made to change the content of

an immutable object a new object is created with the changed content and the "old" one

remains in memory. The string class is immutable. This gives strings a behaviour

similar to value types, which makes them easier to use in programs.

Inheritance

Inheritance is the way in which a class extends a parent to allow it to make use of all the

behaviours and properties the parent but add/customise these for a slightly different

requirement. For more detail see the description of hierarchy.

Interface

An interface defines a set of actions. The actions are defined in terms of a number of

method definitions. A class which implements an interface must contain code for each

Glossary of Terms Library

C# Programming © Rob Miles 2009 181

of the methods. A class which implements an interface can be referenced purely in

terms of that interface. Interfaces make it possible to create components. We don't care

precisely what the component is, as long as it implements the interface it can be thought

of purely in terms of that ability.

Library

A library is a set of classes which are used by other programs. The difference between a

library and a program is that the library file will have the extension .dll (dynamic link

library) and will not contain a main method.

Machine code

Machine Code is the language which the processor of the computer actually

understands. It contains a number of very simple operations, for example move an item

from the processor into memory, or add one to an item in the processor. Each particular

range of computer processors has its own specific machine code, which means that

machine code written for one kind of machine cannot be easily used on another.

Member

A member of a class is declared within that class. It can either do something (a method)

or hold some data (variable). Methods are sometimes called behaviours. Data members

are sometimes called properties.

Metadata

Metadata is data about data. It operates at all kinds of levels. The fact that the age value

is held as an integer is metadata. The fact that it cannot be negative is more metadata.

Metadata must be gathered by the programmer in consultation with the customer when

creating a system.

Method

A method is a block of code preceded by a method signature. The method has a

particular name and may return a value. It may also accept a parameter to work on.

Methods are used to break a large program up into a number of smaller units, each of

which performs one part of the task. They are also used to allow the same piece of

program to be used in lots of places in a large development. If a method is public it can

be called by code other classes. A public method is how an object exposes its

behaviours. A message is delivered to an object by means of a call of a method inside

that object.

Mutator

A mutator is a method which is called to change the value of a member inside an object.

The change will hopefully be managed, in that invalid values will be rejected in some

way. This is implemented in the form of a public method which is supplied with a new

value and may return an error code.

Glossary of Terms Namespace

C# Programming © Rob Miles 2009 182

Namespace

A namespace is an area within which a particular name has a particular meaning.

Namespaces let you reuse names. A programmer creating a namespace can use any

name in that namespace. A fully qualified name of a resource is prefixed by the

namespace in which the name exists. A namespace can contain another namespace,

allowing hierarchies to be set up. Note that a namespace is purely logical in that it does

not reflect where in the system the items are physically located, it just gives the names

by which they are known. C# provides the using keyword to allow namespaces to be

"imported" into a program.

Overload

A method is overloaded when one with the same name but a different set of parameters

is declared in the same class. Methods are overloaded when there is more than one way

of providing information for a particular action, for example a date can be set by

providing day, month, year information or by a text string or by a single integer which

is the number of days since 1
st
 Jan. Three different, overloaded, methods could be

provided to set the date, each with the same name. In that case the SetDate method

could be said to have been overloaded.

Override

Sometimes you may want to make a more specialized version of an existing class. This

may entail providing updated versions of methods in the class. You do this by creating

a child class which extends the parent and then overriding the methods which need to

be changed. When the method is called on instances of the child class, the new method

is called, not the overridden one in the parent. You can use the base keyword to get

access to the overridden method if you need to.

Portable

When applied to computer software, the more portable something is the easier it is to

move it onto a different type of computer. Computers contain different kinds of

processors and operating systems which can only run programs specifically written for

them. A portable application is one which can be transferred to a new processor or

operating system with relative ease. High Level languages tend to be portable, machine

code is much harder to transfer.

Private

A private member of a class is only visible to code in methods inside that class. It is

conventional to make data members of a class private so that they cannot be changed by

code outside the class. The programmer can then provide methods or C# properties to

manage the values which may be assigned to the private members. The only reason for

not making a data member private is to remove the performance hit of using a method

to access the data.

Property

A property is an item of data which is held in an object. An example of a property of a

BankAccount class would be the balance of the account. Another would be the name of

Glossary of Terms Protected

C# Programming © Rob Miles 2009 183

the account holder. The C# language has a special construction to make the

management of properties easy for programmers.

Protected

A protected member of a class is visible to methods in the class and to methods in

classes which extend this class. It is kind of a half way house between private (no

access to methods outside this class) and public (everyone has access). It lets you

designate members in parent classes as being visible in the child classes.

Public

A public member of a class is visible to methods outside the class. It is conventional to

make the method members of a class public so that they can be used by code in other

class. A public method is how a class provides services to other classes.

Reference

A reference is a bit like a tag which can be attached to an instance of a class. The

reference has a particular name. C# uses a reference to find its way to the instance of

the class and use its methods and data. One reference can be assigned to another. If you

do this the result is that there are now two tags which refer to a single object in

memory.

Signature

A given C# method has a particular signature which allows it to be uniquely identified

in a program. The signature is the name of the method and the type and order of the

parameters to that method:

void Silly(int a, int b) – has the signature of the name Silly and two int

parameters.

void Silly(float a, int b) – has the signature of the name Silly and an

float parameter followed by an integer parameter. This means that the code:

Silly(1, 2) ;

- would call the first method, whereas:

Silly(1.0f, 2) ;

- would call the second.

Note that the type of the method has no effect on the signature.

Source file

You prepare a source file with a text editor of some kind. It is text which you want to

pass through a compiler to produce a program file for execution.

Static

In the context of C# the keyword static makes a member of a class part of a class

rather than part of an instance of the class. This means that you don’t need to create an

instance of a class to make use of a static member. It also means that static members are

Glossary of Terms Stream

C# Programming © Rob Miles 2009 184

accessed by means of the name of their class rather than a reference to an instance.

Static members are useful for creating class members which are to be shared with all

the instances, for example interest rates for all the accounts in your bank.

Stream

A stream is an object which represents a connection to something which is going to

move data for us. The movement might be to a disk file, to a network port or even to

the system console. Streams remove the need to modify a program depending on where

the output is to be sent or input received from.

Structure

A structure is a collection of data items. It is not managed by reference, and structures

are copied on assignment. Structures are also passed by value into methods. Structures

are useful for holding chunks of related data in single units. They are not as flexible as

objects managed by reference, but they are more efficient to use in that accessing

structure items does not require a reference to be followed in the same way as for an

object.

Subscript

This is a value which is used to identify the element in an array. It must be an integer

value. Subscripts in C# always start at 0 (this locates, confusingly, the first element of

the array) and extend up to the size of the array minus 1. This means that if you create a

four element array you get hold of elements in the array by subscript values of 0,1,2 or

3. The best way to regard a subscript is the distance down the array you are going to

move to get the element that you want. This means that the first element in the array

must have a subscript value of 0.

Test harness

The test harness will contain simulations of those portions of the input and output

which the system being tested will use. You put your program into a test harness and

then the program thinks it is in the completed system. A test harness is very useful when

debugging as it removes the need for the complete system (for example a trawler!)

when testing.

This

this is a C# keyword which has different meanings depending on the context in which

it is given. It is used in a constructor of a class to call another constructor. It is also used

as a reference to the current instance, for use in non-static methods running inside that

instance.

Typesafe

We have seen that C# is quite fussy about combining things that should not be

combined. Try to put a float value into an int variable and the compiler will get cross at

this point. The reason for this is that the designers of the language have noticed a few

common programming mistakes and have designed it so that these mistakes are

detected before the program runs, not afterwards when it has crashed. One of these

mistakes is the use of values or items in contexts where it is either not meaningful to do

Glossary of Terms Unit test

C# Programming © Rob Miles 2009 185

this (put a string into a bool) or could result in loss of data or accuracy (put a double

into a byte). This kind of fussiness is called type safety and C# is very big on it. Some

other languages are much more relaxed when it comes to combining things, and work

on the basis that the programmer knows best. They assume that just because code has

been written to do something, that thing must be the right thing.

C# is very keen on this (as am I). I think it is important that developers get all the help

they can to stop them doing stupid things, and a language that stops you from

combining things in a way that might not be sensible is a good thing in my book.

Of course, if you really want to impose your will on the compiler and force it to

compile your code in spite of any type safety issues you can do this by using casting.

Unit test

A unit test is a small test which exercises a component and ensures that it performs a

particular function correctly. Unit tests should be written alongside the development

process so that they can be applied to code just after (or in test drive development just

before) the code is written.

Value type

A value type holds a simple value. Value types are passed as values into method calls

and their values are copied upon assignment; i.e. x = y causes the value in y to be

copied into x. Changes to the value in x will not affect the value of y. Note that this is in

contrast to reference types where the result of the assignment would make x and y refer

to the same instance.

Virtual Method

A method is a member of a class. I can call the method to do a job. Sometimes I may

want to extend a class to produce a child class which is a more specialized version of

that class. In that case I may want to replace (override) the method in the parent with a

new one in the child class. For this to take place the method in the parent class must

have been marked as virtual. Only virtual methods can be overridden. Making a

method virtual slightly slows down access to it, in that the program must look for any

overrides of the method before calling it. This is why not all methods are made virtual

initially.

Index

 Index  187

Index

(

() 25, 27

/

/* 45

;

; 26

{

{ 26

+

+ 29

A

abstract

classes and interfaces 113

methods 112

references to abstract classes 115

accessor 89, 124

arrays 66

elements 67

subscripts 67

two dimensional 69

assignment 27

assignments 56

B

base method 109, 117

block 48

boolean 37

brace 26

break 53

button 150

button events 151

C

C 20

camel case 38

case 71

casting 41

chain saw 20

char 35, 121

case 123

tests 123

class 25

class members 86

code reuse 106

color 149

column printing 58

comments 45

compiler 21

component properties 148

components 100, 148

computer 12

data processing 13

embedded system 14

hardware & software 12

program 13

programming 15

condition 46

Console 27

constants 49

constructor 94

chaining 111

custom 95

default 95

failure 98

management 97

overloading 96

parameters 96

context 30

continue 54

custom constructors 95

D

data 13, 32

data protection 108

default 71

default constructor 95

delegates 156

pointers 156

double 26

E

edit form 153

elements 67

enumerated types 72

Equals method 118

escape sequence 35

event management 152

events 156

exception 158

class 158

multiple catches 160

throwing 159

type 158

expressions 39

data types 42

operands 39

Index

 Index  188

operators 39

F

files

streams 134

foreach 136

Form 147, 153

Dispose 155

modal 155

fridge 12

G

global namespace 165

gozzinta 27

graphical user interface 147

GUID 106

H

hash table 130

Hashtable 130

I

identifier 23, 38

if 46

immutable 122

information 13

inheritance 106

integers 33

interface

abstraction 100

design 105

implementing 102

implementing multiple 104

reference 103

K

keyword 23

L

label 148

Length 123

library 162

literal values 32, 42

loops 50

break 53

continue 54

do - while 51

for 52

while 51

M

member protection 86

MessageBox 155

metadata 17

methods 23, 59

base method 109

Main 23

overriding 107

replace 110

sealed 110

stopping overriding 110

virtual 108

mutator 87, 124

N

namespace 24, 164

global 165

nesting 166

separate files 167

using 166

narrowing 40

nested blocks 65

nesting namespaces 166

new 80, 94

O

object class 116

object oriented 21

objects 78, 85, 111

container 127

equals 118

factory method 134

key 131

properties 124

this 119

operands 39

operating system 13

operators 39

combining logical 48

priority 40

relational 46

unary 55

out parameters 63

overflow 33

overloading

constructors 96

overriding 107

P

parameters 28, 60

parenthesis 29

Parse 28

plumber 15

pointers 156

print formatting 57

print placeholders 57

priority 40

private 87, 88

Index

 Index  189

program

Main 25

program flow 45

programmer 12

Programmers Point

Always provide an equals behaviour 121

Avoid Many Dimensions 69

Block Copy is Evil 107

Break Down Your Conditions 48

Bug fixes cause bugs 170

Casts Add Clarity 43

Check your maths 33

Choose Variable Types Carefully 37

Clever is not always Clever 53

Construction Should Be Planned 98, 99

Data Structures are Important 84

Delegates are strong magic 158

Design wth Methods 61

Design Your Class Construction Process 112

Design your error exceptions yourself 160

Design your fault reporting 168

Document your Side Effects 63

Don’t use new fangled stuff just because it is there

127

Don't Replace Methods 110

Enums are Good 74

Every Message Counts 147

Flipping Conditions 54

Fully Qualified Names are Good 167

Give Your Variables Sensible Names 38

Good Communicators 19

Great Programmers 22

Importance of Hardware 14

Importance of Specification 16

Interfaces are just promises 105

Internationalise your code 100

Know Your Data Source 26

Langauges do Help 63

Make sure you use the right equals 119

Metadata 17

Metadata members Members and Methods 88

Not everything should be possible 86

Pace Your Comments 45

Plan for Failure 64

Plan Your Variables 66

private data and public methods 88

Production Code 141

Program Layout 31

Programming Languages 20

Programs often fail in the error handlers 161

Static Data Members are Useful and Dangerous 92

Static Method Members can be used to make

libraries 94

Streams are wonderful 135

Strive for Simplicity 57

Structures are Crucial 77

Stupid Computers 21

Switches are Good 72

Test Driven Development Rocks 90

There is only so much you can do 134

Try to avoid the garbage man 83

Use break With Care 53

Use Numbers Not Messages 144

Use Simple Variable Types 35

Users have strong opinions about the user interface

156

Version Control and Change Management 164, 168,

170

programming languages 19

properties 86, 124

in interfaces 126

public 88

punctuation 31

R

ReadLine 27

recipie 22

reference 80, 81, 83

parameters 62

to abstract class 115

replacing methods 110

return 60

S

scope 72, 82

sealed 110

searching 129

semicolon 26

source files 161

Star Trek 12

statement 23

returning values 56

static 25, 90

data 91

methods 92

story telling 44

streams 134

string 35, 121

comparison 122

editing 122

immutable 122

Length 123

literal 29

StringBuilder 124

structures 75

accessing 76

defining 76

subscripts 67

switch 70, 71

case 71

System namespace 24

T

text based editing 146

TextBox 149

Index

 Index  190

this 119

ToString 116

ToUpper 123

Trim 123

U

unicode 36

user 12

using 24

V

value parameters 62

variable scope 64

variables 23, 32

arrays 66

assignment 39

bool 37

char 35

declaring 33

double 26

float 34

list 26

string 36

structures 75

text 35

types 32

verbatim 37

virtual methods 108

void 25

W

widening 40

WriteLine 29

